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Abstract

For spacecraft conducting on-orbit operations, changes to the structure of the

spacecraft are not uncommon. These planned or unanticipated changes in inertia

properties couple with the spacecraft’s attitude dynamics and typically require

estimation. For systems with time-varying inertia parameters, multiple model

adaptive estimation (MMAE) routines can be utilized for parameter and state

estimates. MMAE algorithms involve constructing a bank of recursive estimators,

each assuming a different hypothesis for the system’s dynamics. This research

has three distinct, but related, contributions to satellite attitude dynamics and

estimation. In the first part of this research, MMAE routines employing parallel banks

of unscented attitude filters are applied to analytical models of spacecraft with time-

varying mass moments of inertia (MOI), with the objective of estimating the MOI

and classifying the spacecraft’s behavior. New adaptive estimation techniques were

either modified or developed that can detect discontinuities in MOI up to 98% of the

time in the specific problem scenario. Second, heuristic optimization techniques and

numerical methods are applied to Wahba’s single-frame attitude estimation problem,

decreasing computation time by an average of nearly 67%. Finally, this research poses

MOI estimation as an ODE parameter identification problem, achieving successful

numerical estimates through shooting methods and exploiting the polhodes of rigid

body motion with results, on average, to be within < 1% to 5% of the true MOI

values.
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ADAPTIVE ESTIMATION AND HEURISTIC OPTIMIZATION OF

NONLINEAR SPACECRAFT ATTITUDE DYNAMICS

I. Introduction

1.1 Motivation

The National Security Space Strategy (NSSS) highlights the vital role of space

in Intelligence, Surveillance, and Reconnaissance (ISR), power projection, diplomacy,

and military operations 1][1]. Further, the NSSS details the increasingly congested,

contested, and competitive space environment and the need to maintain the strategic

national security advantages afforded by space. The growing global domain of space

operations requires an improvement in shared Space Situational Awareness (SSA),

and the NSSS recommends the United States (US) invest its knowledge base to foster

SSA cooperation while protecting US and partner space capabilities [1].

There are over 1,000 operational satellites and an excess of 11,000 pieces of

trackable debris among the low Earth orbit (LEO), medium Earth orbit (MEO), and

geosynchronous Earth orbit (GEO) orbital regimes [1; 2]. The Joint Space Operations

Center (JSpOC) performs the SSA mission by tasking collections from various

sensor sources to collect orbital data and perform current and future predictions

of space object ephemeris. The SSA mission is becoming increasingly difficult when

considering the trend towards smaller space vehicles [3], discussion of disaggregated

mission sets [4], as well as debris created from collisions [5], Anti Satellite (ASAT)

testing [1], and other catastrophic events.

Further impeding the SSA mission are the methods by which the JSpOC

tracks and propagates Resident Space Object (RSO)s. In 2011, Air Force Space
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Command (AFSPC) tasked the National Research Council (NRC) to “assess (their)

astrodynamics standards...and their effectiveness...”[6]. Nongravitational effects (e.g.,

solar radiation pressure, atmospheric drag) perturb the nominal Keplerian motion

of an object with a wide range of effects depending on the position and attitude

of the object. AFSPC employs a number of astrodynamics algorithms to generate

ephemerides with varying degrees of accuracy and inclusions of perturbing forces,

which directly affect computational time. The analytic models in the more commonly

known Simplified General Perturbations 4 (SGP4) and Special Perturbations (SP)

numerical integration techniques do not take into account certain key satellite

properties, such as attitude and shape, and additions of these states could improve

orbit predictions [6].

The accuracy from including an RSO’s attitude within an orbital state

propagator is limited by the accuracy of the attitude estimate. The attitude dynamics

of a rigid (or flexible) body are highly nonlinear, coupled, and sensitive to particular

system parameters such as the spacecraft moment of inertia (MOI) [7]. Accurate

attitude determination and the tight coupling between the MOI and rotational

dynamics of the spacecraft is of concern to SSA operators. Miscalculation of the

spacecraft orientation, changes in MOI, or assumptions of rigidity could directly

contribute to the observed effect of non-gravitational perturbations on an orbit and

the consequential error and state covariance growth. Moment of inertia changes

are not always deterministic. Unplanned changes to a spacecraft’s structure can

result from debris, external actors, or hardware faults. For example, the recent loss

of the Japanese satellite Hitomi has been attributed to human error and possible

solar panel faults [8]. In this example, adaptive estimation techniques applied to

the available streaming attitude telemetry could have potentially identified the fault

through various filters assuming different MOI modes.
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As three independent parameters are needed to define a body’s attitude, the

number of sensor measurements often pose the attitude estimation as under- or

overdetermined, and implies that attitude determination algorithms are essentially

estimation routines. Some particular spacecraft configurations allow for special case

solutions of Euler’s rotational equations (for example, an axisymmetric, torque-free

rigid body), but nonlinearities and external forcing functions will perturb even this

simplistic model and one must estimate the attitude. Various sensor sources ranging

from inertial measurement units to star sensors are used to construct observations

for attitude estimation algorithms. The sensor observations are then operated on by

some estimation routine in order to determine the state and account for sensor noise.

A survey of various estimation and filtering techniques will be discussed in Chapter

2.

The NRC found that for the nonlinear governing equations in astrodynamics,

advanced estimation techniques should be employed to characterize state estimates

and their uncertainties [6]. Space is a data-sparse environment, and, consequently,

convergence times for state estimators and filters can be of considerable duration.

Multiple model filters have been shown to be capable of converging on state

estimates with limited data [6; 9]. Multiple model techniques have also demonstrated

operational efficacy in detecting the states of maneuvering missiles and aircraft where

sudden changes in dynamics are experienced [6; 10; 11]. Multiple model techniques

are well posed for the spacecraft maneuver estimation problem, determining if and

how a maneuver occurred for a given satellite at a given time [12–15]. The rotational

analog to the translational maneuver detection seeks to determine sudden changes in

a spacecraft’s MOI via streaming attitude telemetry. Sudden or gradual MOI changes

that are not accounted for are likely to introduce an evolving error into the coupled
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rotational and translational dynamics, potentially leading to position tracking errors

while hindering on-orbit missions that are functions of attitude.

1.2 Problem Statement

For spacecraft conducting on-orbit operations, changes to the structure of

the spacecraft are not uncommon. The extension of a communications antenna,

deployment of a gravity gradient boom, solar panel rotation, fuel usage, or

catastrophic events such as debris collisions, will produce changes in the spacecraft’s

MOI. There is a tight coupling between MOI and rotational dynamics which

further couples with translational motion when model perturbations are included,

or the point mass assumption is relaxed. Thus, accurate situational awareness and

characterization of a spacecraft is a function of both translational and rotational

motion, and requires accurate attitude determination and estimation of structural

properties.

1.3 Research Objectives

The objective of this research is to develop and evaluate new estimation

methodologies to determine spacecraft attitude and MOI, and probabilistically

classify spacecraft behavior. Chapter 3 examines a new application of adaptive

attitude estimation to a spacecraft with time-varying MOI as a proof of concept that

lays the foundation for future hardware experiments. In Chapter 4, newly developed

computational techniques and heuristic optimization methods are evaluated with

respect to the single-frame attitude estimation problem where orientation is

determined by using multiple unit vector observations. In Chapter 5, the MOI

estimation problem is formulated as one of parameter estimation within a system of

nonlinear Ordinary Differential Equations (ODE), wherein single-shooting numerical

methods are enhanced. Finally, also in Chapter 5, classical properties of analytical
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mechanics are combined with hybrid optimization techniques to estimate principal

MOI.

1.4 Methodology Overview

The dissertation is formatted as three separate, but distinct, articles intended

as journal submissions. Chapters 3 through 5 are related with the commonality of

studying satellite attitude dynamics, rigid body motion, and estimation theory. Due

to this construct, background and methodology are repeated throughout. Chapter 3

demonstrates a novel application of MMAE to attitude dynamics with a time-varying

MOI, while Chapter 4 looks at attitude estimation as a single-frame problem rather

than the filtering methods in Chapter 3. Finally, Chapter 5 enhances and develops

algorithms for estimating the spacecraft mass MOI, a key system characteristic of

rigid body motion. This section provides a main overview of the methodology used

in each chapter.

The research presented in Chapter 3 examines the application of MMAE

to spacecraft attitude determination using an on-board gyro and three-axis

magnetometer. The multiple model filter bank is constructed of variants of the

Unscented Quaternion Estimation (USQUE) filter developed by Crassidis, et al. [16].

Three scenarios are examined: (1) a scenario identifying the correct relative MOI

ratio; (2) determining an input command to a deployable, rotating payload; and

(3) detecting a series of separating payloads. Truth data is simulated using Euler’s

Equations of Motion (EOM) and converted to measurements while corrupting with

Gaussian noise for filter inputs. Finally, a series of adaptive estimation algorithms

are analyzed for robustness and detection capabilities.

Chapter 4 examines the use of new computational and optimization techniques

to the single-frame attitude estimation problem. For the computational portion, a

series of test cases constructed by Markley [17] are used which are designed to be
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representative of various sensor combinations, observations, and sensor noise. The

research makes use of Strobach’s Fast Quartic Solver [18] to rapidly solve a quartic

eigendecomposition problem to compute the optimal quaternion, and is compared

to classical methods such as QUEST and the q-method. The optimization portion

performs a Monte Carlo type simulation on a series of vector measurements with

varying noise, and directly minimizes a least-squares cost function using particle

swarm optimization (PSO) and a genetic algorithm (GA). Various combinations of

noise levels, vector observations, and optimization solver parameters are analyzed.

Results are assessed using computational time and attitude error as metrics.

Chapter 5 presents a novel approach to determining the relative MOI ratios and

the actual principal MOI values given angular velocity measurements. The relative

MOI ratios are estimated by constructing an algorithm to perform single-shooting

on Euler’s equations while iterating on the MOI ratios via the Levenberg-Marquardt

variant of Newton-Raphson iteration. Known external torques are then accounted for

by re-deriving a Jacobian in an effort to determine the principal MOI using single-

shooting. Finally, the principal MOI is estimated by exploiting a classical shape in

rigid body motion known as a polhode, which is formed by the intersection of an

angular momentum and kinetic energy ellipsoid. Various sets of angular velocity

measurements are simulated, and a two-step optimization process is employed that

uses intermediate conversions between variables known as Smelt parameters. The

shape of two ellipsoids is then iterated on until their intersection is within a degree

of numerical tolerance error when compared to the measured polhode.

1.5 Research Contributions

The development of an adaptive estimation methodology in Chapter 3 has

immediate and future impacts to the space community. This research presented a

first-of-its-kind examination of time-varying MOI characterization using streaming
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attitude data. Although this research focuses on the use of on-board sensor suites,

ground-based or stand-off sensors, that are capable of detecting some phenomenology

that correlates with attitude, follow analogous algorithms. The problem of detecting

separating payloads is also directly analogous to estimating positive additions to

the MOI or spacecraft structure. This work demonstrated that time-varying MOI

characterization is possible using adaptive estimation and has set a path for hardware

experimentation, and the reformulation of the problem that is not as reliant on the

variability of filters in the adaptive estimation bank.

A key contribution from the work in Chapter 4 resulted in the application

of a rapid quartic root solver applied to the characteristic equation from Wahba’s

problem for a savings in computational cost. This research also allowed for the

contribution of a new application of heuristic optimization to a total least-squares

problem for attitude determination. For the rapid root solver, faster and precise

attitude estimates allow for decreased time lag between observation and estimate,

and can assist in the implementation of near real-time optimal control. One of

the main benefits to estimating the quaternion via a heuristic method is a ‘close

enough’ initial guess is not required, as heuristic techniques implement randomly

chosen initial candidate solutions. Although these optimization methods may be

too computationally demanding for on-board processing, the heuristic algorithms are

applicable to off-line post-processing of a vector observation time history.

The research contributions from Chapter 5 are more mathematical and abstract

in nature, but do present two new methodologies to estimate structural configurations

of spacecraft using angular rate data. Relative MOI ratios and principal MOI values

have not, to the author’s knowledge, been posed as an ODE parameter estimation

problem using Euler’s equations, and, further, have not been estimated via single-

shooting techniques. For torque free rigid body motion, the literature has also
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indicated that only the relative MOI ratios can typically be estimated, but via

intermediate normalizations and two-step optimization this research has shown that,

given a measured set of angular velocity, the principal MOI of a spacecraft can be

estimated. For a tumbling non-cooperative spacecraft or piece of debris, capture

requires some knowledge of the body’s MOI. This research has shown that, by some

type of sensor measurement that results in an angular velocity estimate, the principal

MOI can be estimated by exploiting the polhodes of classic analytical mechanics.

1.6 Dissertation Overview

The author has organized this dissertation into six chapters. In Chapter 1, the

problem and its motivation are introduced. Chapter 2 presents a broad, in-depth

review of previous research in the various fields this dissertation extends. Chapter

3 demonstrates a novel application of MMAE to attitude dynamics with a time-

varying MOI, while Chapter 4 looks at attitude estimation as a single-frame problem

rather than the filtering methods in Chapter 3. Chapter 5 enhances and develops

algorithms for estimating the spacecraft mass MOI, a key system characteristic of

rigid body motion. Chapter 6 concludes the dissertation by providing a summary of

the research results, detailed contributions made by this work, and future work the

author has deemed noteworthy. As the dissertation is presented as distinct but related

articles, there will inevitably be some overlapping background, literature review, and

methodology in each chapter that is included for completeness, but may appear as

redundant to the reader. Hyperlinks are included throughout to enable quick reference

to equations, sections, sources, and acronyms. The following subsections present a

brief overview of Chapters 3 to 5.
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1.6.1 Adaptive Estimation of Nonlinear Spacecraft Attitude Dy-

namics with Time Varying Moments of Inertia.

In Chapter 3 a series of scenarios are constructed to evaluate the performance

of various adaptive estimation routines in identifying and estimating a spacecraft’s

time varying MOI. To the extent of the author’s knowledge, this effort is the first

application of adaptive estimation to the case of a variable spacecraft MOI using

streaming attitude data. A methodology is developed to detect sudden MOI changes

using a bank of Unscented Kalman Filters as a numerical testbed for future real-world

implementation. A hybrid adaptive estimation algorithm to detect sudden parameter

changes in nonlinear systems is developed combining two state of the art routines.

The work in [19] presented the preliminary results of the research discussed in Chapter

3.

1.6.2 Alternate Numerical Solutions to Wahba’s Problem of Se-

quential Frame Attitude Estimation Using Heuristic Opti-

mization and Fast Quartic Numerical Solvers.

In Chapter 4 the single-frame estimation problem is solved by a rapid numerical

solver and by heuristic optimization techniques. Grace Wahba posed the satellite

attitude determination problem as a least-squares optimization problem in 1965 [20].

That is, given N sets of simultaneous vector measurements in two different reference

frames, Wahba’s problem seeks to approximate the rotation matrix between the two

frames that minimizes a particular cost function. This rotation matrix defines the

current attitude estimate. Classical numerical solutions to Wahba’s problem include

Davenport’s q-method [21], TRIAD [22], QUEST [23], and several other techniques

[24]. This research proposes the application of Strobach’s Fast Quartic Solver

[18] to quickly solve a fourth-order eigenvalue problem required for the quaternion

attitude estimate. Additionally, this work examines the application of heuristic based
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techniques, to include particle swarm optimization (PSO) and genetic algorithms

(GA), to solve Wahba’s minimization problem to estimate spacecraft attitude.

1.6.3 Spacecraft Moment of Inertia Estimation Posed as an

Ordinary Differential Equation Parameter Estimation.

Chapter 5 investigates the problem of MOI estimation given measurements of

the rotational trajectory and initial conditions. The current problem is solved in

two manners. The first approach formulates the problem as a parameter estimation

in a nonlinear ordinary differential equation under the presence of stochastic

measurement noise. Relative MOI ratios are estimated with Single-shooting methods

employing Levenberg-Marquardt iteration schemes. The second approach, in a

new fashion, employs a cost function exploiting the classical polhodes of analytical

mechanics and known constants of the motion, within a two-step optimization process

utilizing heuristic optimization techniques as warm starts to Sequential Quadratic

Programming (SQP) optimizers. Intermediate normalizations and use of Smelt

parameters are used to minimize the cost function to estimate actual principal MOI

values rather than relative MOI ratios.

1.7 Chapter Summary

This chapter served to introduce the reader to research and results discussed

throughout this dissertation. Motivating examples were given and a problem

statement detailed. From this problem statement, research goals were developed.

The methodology used in the research was detailed and the contributions to the field

were also discussed.
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II. Background

This chapter provides a discussion on related work in satellite attitude dynamics,

attitude and adaptive estimation, MOI estimation, and heuristic optimization. The

review presented in this chapter provides a contained, consolidated basis of research

upon which this dissertation is built. An additional goal of this chapter is to establish

boundaries on relevant research in order to demonstrate contributions to the fields

made by this dissertation. The chapter begins with a philosophical and mathematical

discussion of spacecraft attitude dynamics. Next, this chapter provides a discussion

on estimation theory immediately followed by its application to spacecraft attitude

estimation. A survey on adaptive estimation, a methodology critical to the results of

Chapter 3, is then provided. The estimation portion of this chapter will then finish

with a discussion of spacecraft MOI estimation, the focus of Chapter 5. Next, a survey

on heuristic optimization, focusing on PSO and GA, is provided as these methods

are pertinent to the results presented in Chapters 4 and 5. As this document is

constructed with three distinct articles, some background in Chapters 3 to 5 may

appear repetitive when compared to the forthcoming discussing. This section is

intended to provide a broad overview, while individual chapters will provide more

details regarding the literature review.

2.1 A Discussion on Rigid Body Motion and Spacecraft Attitude

Dynamics

The commonality among the three distinct research projects presented in this

dissertation is spacecraft attitude dynamics. Therefore, this section will present a

top-level discussion on rigid body motion and attitude dynamics. The derivation of

Euler’s equations will be presented along with a particular solution to the system.

A discussion on attitude parameterization will be presented, accompanied by the
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quaternion equations of motion. The section will conclude by examining the impact

of time-varying MOI on a spacecraft’s attitude motion.

2.1.1 Euler’s Rotational Equations of Motion.

The rotational dynamics of a rigid body, where rigid implies that the distance

between any two points on the body is constant, are derived by essentially restating

the conservation of angular momentum principle. That is, in an inertial frame, the

time rate of change of a body’s angular momentum, H, is equal to the vector sum of

external torques, M, acting on the body. Let ω denote the angular velocity of a body

expressed in a reference frame fixed to the body, but with respect to some inertial

frame, and let I denote a real, symmetric 3× 3 matrix whose elements are the body’s

moments and products of inertia. The conservation of angular momentum principle

can be stated mathematically as

M = Ḣ, (2.1)

where H is expressed as

H = Iω, (2.2)

and the ˙( ) notation indicates an inertial derivative with respect to time. Substituting

Eq. (2.2) into Eq. (2.1), and subsequently applying the Transport Theorem to

Eq.(2.1) results in the following body-frame derivative

M = Iω̇ + ω×Iω, (2.3)

where the MOI has been assumed constant, and the ω× operator is the skew-

symmetric matrix multiplication representation of a cross-product, given as

ω× =


0 −ω3 ω2

ω3 0 −ω1

ω2 ω1 0

 . (2.4)
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Solving for ω̇, the rotational equations of motion become

ω̇ = I−1
[
M− ω×Iω

]
(2.5)

The system of equations represents a set of coupled, nonlinear ODE, the solution of

which yields the instantaneous angular velocity ω. Since the attitude of a body is

an orientation with respect to another reference frame, this angular velocity is then

used to map to a particular attitude parameterization, discussed in Sections 2.1.3

and 2.1.4. The coupled, nonlinear ODEs of rotational motion are difficult to solve in

closed-form. The following presents a popular particular case of torque-free motion.

2.1.2 Closed-Form Solutions for Spacecraft Rigid Body Motion.

Without loss of generality, the rigid body is now assumed as a rigid spacecraft,

and the assumption is made that there are no external torques, and that MOI matrix

has been diagonalized such that

I =


A 0 0

0 B 0

0 0 C

 , (2.6)

where A,B, and C are now the MOI about the body’s principal axes. Given the

assumption that I is real, symmetric, and has been diagonalized, the inverse of this

matrix is then the diagonal matrix of the reciprocals of the diagonal. Placing these

assumptions in Eq. (2.5), the matrix-vector form of Euler’s equations in the principal

frame are 
ω̇1

ω̇2

ω̇3

 = −


1
A

0 0

0 1
B

0

0 0 1
C




0 −ω3 ω2

ω3 0 −ω1

ω2 ω1 0



A 0 0

0 B 0

0 0 C



ω1

ω2

ω3

 . (2.7)
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Eq. (2.7) is now expabnded in three scalar equations and rearranged to represent the

full coupled, nonlinear system of ODEs

ω̇1 =

(
B − C
A

)
ω2ω3

ω̇2 =

(
C − A
B

)
ω3ω1

ω̇3 =

(
A−B
C

)
ω1ω2

. (2.8)

From Eq.(2.8), it is immediately apparent that for torque-free rigid body motion, one

of the main driving system characteristics is the relative MOI ratios (the coefficients in

the parentheses), versus the individual MOI values. Closed form solutions of Euler’s

torque-free equations of motion exist in closed-form for special cases. Consider the

case of a rigid body that is isoinertial (e.g., a sphere), the rotational equations of

motion would then integrate such that all angular velocities were constant values.

A particular solution presented now is the case of the axisymmetric body (e.g.,

a rectangular prism or cylinder) where A and B are equal. Placing this assumption

in Eq. (2.8) produces

ω̇1 =

(
1− C

A

)
ω2ω3

ω̇2 =

(
C

A
− 1

)
ω3ω1

ω̇3 = 0

. (2.9)

Immediately, ω3 integrates as a constant, and the (ω1, ω2) time-history integrates as

two harmonic oscillators. Hughes [7] provides the (ω1, ω2) solution as

ω1(t) = ω1,0 cos (Ωt) + ω2,0 sin(Ωt)

ω2(t) = ω2,0 cos (Ωt)− ω1,0 sin(Ωt)

, (2.10)

where Ω is a relative spin rate given as

Ω =

(
1− C

A

)
ω3,0. (2.11)
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Equations (2.10) and (2.11) present a closed-form solution for the torque-free

axisymmetric body, but the mapping to an attitude parameterization still remains

to be solved. In general, a spacecraft will not be precisely axisymmetric, nor be

operating in an environment without external torques. The relations above serve

to demonstrate the complexity in Euler’s equations, and the strong dependence the

system has on spacecraft MOI and coupling among states.

2.1.3 Attitude Parameterization.

Shuster provides a broad survey of attitude representations in [25]. This section

will present key highlights from [25] while augmenting with additional sources. The

parameters focused on in this section are those used in the course of this research,

namely Euler angles, quaternions, and Rodrigues parameters. The purpose of this

section is to familiarize the reader with the terminology, difficulties, and complexity

of parameter choices with respect to this research. During this research, the author

will primarily make use of the quaternion parameterization.

2.1.3.1 Euler Angles.

One of the more common attitude representations are Euler angles, which

describe the orientation of reference frame B relative to another frame N through

three consecutive rotations [26]. The successive rotations are typically defined as

(X, Y, Z) where X, Y, and Z represent axes of rotation. For example, a popular set

of Euler angles in astrodynamics is the (3, 1, 3) set that defines the orientation of an

orbital plane with respect to the central body inertial frame.

Although Euler angles are easier to visualize for small rotations and have

the minimum dimension required to specify an attitude, there is a computational

singularity associated with their use. Symmetric rotations of the form (X, Y,X)

have geometric singularities when the second rotation is 0 or 2π, as the first and

third rotation are indistinguishable. Additionally, asymmetric rotations of the form
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(X, Y, Z) will have singularities when the second rotation is ±π/2, as the first and

third rotations are again indistinguishable. In order to fully describe the attitude

using a single Euler angle parameterization, one must have a priori knowledge of the

operational pointing of the spacecraft; otherwise, one may require the employment of

two or more sets of Euler angles [25].

2.1.3.2 Quaternions.

Euler’s principal rotation theorem implies that rather than three consecutive

motions, the orientation of a rigid body can be described by a single rotation through

a principal angle about a principal axis [26]. Given a rotation matrix R that describes

frame B relative to frame N, the principal rotation angle Φ can be found as

cos Φ =
1

2
(tr(R)− 1) (2.12)

where tr is the trace operator (i.e., the sum of the diagonal terms of a matrix) and

the principal rotation axis ê can be found from

ê =
1

2


R23 −R32

R31 −R13

R12 −R21

 . (2.13)

Equations (2.12) and (2.13) can be used to describe an identical attitude as an Euler

angle set but will have two solutions including a short and long rotation about the axis

to the desired orientation [26], which is not troublesome for numerical propagation

schemes. A popular coordinate that employs the principal rotation axis and angle is

the quaternion, which is expressed following the notation of Crassidis et al. [24] as

q =

 %

q4

 (2.14)

where

% = [ q1 q2 q3 ]T = ê sin Φ/2 (2.15)
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and

q4 = cos Φ/2. (2.16)

The quaternion is a four-dimensional vector but only specifies three degrees of

freedom (DOF) due to a unity norm constraint such that

qTq = 1. (2.17)

The most prominent advantage of the quaternion parameterization is the lack of

singularities in the kinematics, and successive rotations can be accomplished using

quaternion multiplication [24]. However, one negative in the use of quaternions

is a lack of attitude visualization due to the four-dimensional parameterization.

Mathematical treatment and derivation of quaternions that has been cited frequently

in the astrodynamics community can be found in Shuster [25] and is not replicated

here. A philosophical examination of the quaternion and its historical development

can be found in [27].

2.1.3.3 Rodrigues Parameters.

The Classical Rodrigues Parameters (CRP) essentially reduce the four-dimensionality

of the quaternions to a three-dimensional set by normalizing the quaternion vector by

q4 [26]. Schaub and Junkins describe the CRPs as stereographic projects of the four-

dimensional quaternion unit sphere to a three-dimensional hyperplane orthogonal to

q4 [28]. Since the normalization is performed with q4 = cos Φ/2 in the denominator,

the CRPs are singular for Φ = ±π, which is a broader operational range than the

±π/2 range associated with Euler angles. The Modified Rodrigues Parameters (MRP)

are similar to the CRPs in that they are fundamentally derived from the quaternions;

however, the normalization occurs with a division by (1 + q4), which moves the sin-

gularity to ±2π, doubling the rotational range of the MRPs compared to the CRPs

[26].
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2.1.4 Quaternion Dynamics.

Discussed previously in Section 2.1.3.2, quaternions avoid the Euler angle

singularities and will be the attitude parameterization used most often in this research.

The rotation matrix can be determined from the quaternion through the following

relationship using Crassidis’ notation [24], while an equivalent representation can be

found in Schaub [26],

R(q) =
(
q2

4 − ||%||2
)

13×3 + 2%%T − 2q4%
× = ΞT (q)Ψ(q) (2.18)

where the matrices Ξ and Ψ are expressed as

Ξ(q) =

q413×3 + %×

%T


Ψ(q) =

q413×3 − %×

−%T

 .
(2.19)

Using this matrix notation, Crassidis gives the quaternion kinematics as [24]

q̇ =
1

2
Ξ(q)ω =

1

2
Ω(ω)q (2.20)

where the Ω matrix is given as

Ω(ω) =

−ω× ω

−ωT 0

 . (2.21)

Expanding Eq. (2.20) in matrix-vector form, the following equivalent expressions are

found [29]

q̇1

q̇2

q̇3

q̇4


=

1

2



q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3




ω1

ω2

ω3

 =
1

2



0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0





q1

q2

q3

q4


. (2.22)
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Notation will differ throughout the literature, as various authors may organize

the quaternion structure differently. One immediate advantage of the quaternion

kinematics is the far-right expression in Eq. (2.22) is linear in terms of the

quaternions. This allows for a linear approximation via a matrix exponential that

can be used in a Jacobian. Integration for the attitude history requires a seven state

vector, where four states are the quaternions, and the remaining states are the angular

velocities.

The four states in the quaternion vector should not be confused with additional

degrees of freedom for the rotational system. Given three values of a quaternion

representation, the fourth can be found by solving for the constraint. However, there

will be an ambiguity in the sign of the fourth element which is representative of the

same rotation, but differs only by a “long way” and a “short way” to achieve the

orientation, which can be easily distinguished.

2.1.5 Time Varying Moment of Inertia Effects.

Rigidity of the body was a key assumption in Euler’s equations, which implies the

time derivative of the MOI tensor is zero. Structural changes such as boom extensions

or antenna deployment, or internal phenomena such as fuel slosh, may introduce a

time variance to the MOI. That is

d

dt
(I) 6= 03×3. (2.23)

Re-examining the first principles in Euler’s equations, use of the transport theorem

becomes slightly more complicated. Rather than re-deriving using angular momentum

conservation arguments, Thakur, et al. [30], present the attitude dynamics of the

nonrigid body as

I(t)ω̇ = −İ(t)ω − ω×I(t)ω +M , (2.24)

where the time dependency is explicitly stated for the MOI but is assumed on

ω. Comparing to the rigid body Euler’s equations Eq.(2.3), the time-varying MOI
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increases the coupling in the system and, depending on the structural dynamics, is

likely to increase the nonlinearity of the system as well. Because properties of the

MOI tensor are now time-dependent, the eigenvalues will now evolve according to a

given set of structural dynamics, and the corresponding principal axes may evolve

as well. Analytical solutions to Euler’s equations with a time-varying MOI quickly

become cumbersome, complex, and difficult to generalize [31], and in some cases can

result in chaotic attitude motion [32]. However, for particular spacecraft geometries,

controlled variable MOI has been demonstrated as a means of possible attitude control

[33]. Thakur et al. provide time dependent MOI models for appendage deployment

and fuel loss resulting from maneuvering [30; 34].

2.2 An Overview of Kalman Filtering

The physical phenomena that are immediately available for observation and

measurement are not always the variables or states of interest. In the current

spacecraft attitude problem, control and pointing requirements make a state vector

of attitude parameters desirable, but noisy physical measurements such as gyro rates

and magnetometer observations may only be available. This section will introduce

classical sequential estimation techniques in the sense of the Kalman filter and its

variants.

2.2.1 Linear Kalman Filter.

This section will present a top-level discussion of the linear Kalman filter. The

Kalman filter is often termed the optimal estimator [35] and minimizes the expected

value of the mean squared error and the trace of the covariance matrix. As a sequential

estimator, the filter is recursive and propagates the previous time step based on

stochastic properties and system dynamics. Though not presented here, [36] presents

a classical scheme for linear Kalman filtering applied to attitude dynamics.
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An inherent assumption in the linear Kalman filter are disturbance inputs and

measurement errors that are distributed with a zero-mean Gaussian distribution as

well as stationary and uncorrelated processes [37]. The linear Kalman filter can be

divided into three main phases:

1. Propagate State and Covariance Estimates

2. Compute Gain

3. Update State and Covariance Estimates

Note that the three phases are sometimes combined into two phases, where

propagation and gain computation are consolidated. Following the development

in Stengel [37], the initial phase propagates the state estimate from the previous

iteration using the dynamic system model, while ignoring new measurement data.

The covariance estimate is also propagated using the system dynamics and process

noise in this initial phase. The second phase is the computation of the Kalman gain

using a priori knowledge, while also ignoring the measurements. The final update

phase uses innovations from the measurement residuals along with the Kalman gain

to update the previously propagated state estimates.

The linear Kalman filter process will now be detailed mathematically using a

modification of Stengel’s notation in [37]. Proofs concerning the minimization of the

mean squared error and derivation of the Kalman gain can be found in most stochastic

estimation texts. Given a discrete time linear system that evolves with the dynamics

xk = Φk−1xk−1 + Γk−1uk−1 + Λk−1wk−1 (2.25)

where Φ is a state transition matrix, and Γ and Λ operate, respectively, on the

system input u and system disturbance w. The covariances of the state, disturbance

vector, and measurement noise are assumed as P, Q, and R, respectively. The
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following algorithm will use the notation that a superscript − or + is the propagated

or updated value at a given time step, respectively, and assumes an understanding

that the states are estimated values. The state and covariance propagation are given

as

x−k = Φk−1x
+
k−1 + Γk−1uk−1

P−k = Φ−k−1P
+
k−1Φ

T
k−1 +Qk−1

. (2.26)

A measurement vector yk is assumed to be expressed by the linear mapping

yk = Hkxk + nk , (2.27)

where H is a known mapping from state to observation and nk is uncorrelated zero-

mean Gaussian measurement noise with covariance R. The Kalman gain K can now

be calculated as the matrix gain that minimizes the trace of the covariance P

Kk = P
−(−1)
k HT

k

[
HkP

−
k HT

k + Rk

]−1
. (2.28)

The Kalman gain requires the inversion of a matrix that is of the order of the

observation vector. Having the Kalman gain, the state and covariance can now be

updated using measurement data

x+
k = x−k + Kk

[
yk −Hkx

−
k

]
P+
k =

[
P
−(−1)
k + HT

kR−1
k Hk

]−1
. (2.29)

If ν is a vector of residuals such that ν = yk − Hkx
−
k , then the state update in

Eq.(2.29) becomes

x+
k = x−k + Kkν. (2.30)

The
(
HT
kR−1

k Hk

)
relation in the covariance update serves to illustrate the

problem with measurement perfection, in that zero measurement noise results in

a singular matrix inversion and an invalid update. The Kalman gain is a function of

the relation between the stochastic input and the measurement mapping and noise,
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and does not depend on the actual measurements. The measurement residuals only

impact the update to the state estimate.

This section presented the linear Kalman filter, which assumes the system

dynamics can be propagated as a linear system. The following sections relax this

assumption and present estimation methods for nonlinear systems.

2.2.2 Extended Kalman Filter.

The linear Kalman filter in Section 2.2.1 relied on linear system dynamics.

However, most problems of interest in astrodynamics and spacecraft attitude are

nonlinear in nature (for example, orbit and attitude determination). The Extended

Kalman Filter (EKF) is best applied to nonlinear estimation problems by linearizing

the system dynamics about the most current estimate. The EKF typically has a longer

computation time than the linear Kalman filter as a Jacobian and state transition

matrix must be computed at each time step [38].

The EKF follows a nearly similar structure to the linear Kalman filter with slight

differences. The propagation of the state and covariance requires integration of the

Φ(t) matrix, or State Transition Matrix (STM). The differential equation for the

STM is given as

d

dt
Φ(t) = AΦ(t) =

∂f

∂x
Φ(t) (2.31)

with the initial condition on the Φ matrix as identity. The matrix A is the Jacobian of

the system dynamics with respect to the state and requires evaluation at the current

estimate. In dynamics regimes where nonlinearities are present, there is potential

for the Jacobian to be a poor approximation of the system and contribute to filter

divergence [38].

2.2.3 Unscented Kalman Filter.

As the governing equations for attitude dynamics are nonlinear, an EKF is more

desirable over a linear Kalman filter. However, the EKF does have some drawbacks,
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the most paramount being the loss of higher-order terms in the system dynamics

[39] and often complicated Jacobians in the state-measurement relations. Julier

and Uhlmann introduced the Unscented Kalman Filter (UKF) in [40] to avoid the

linearization inherent in the EKF.

The system model for the UKF formulation assumes the form

xk+1 = f(xk, tk) + wk

yk = h(x, tk) + vk

(2.32)

where f and h are arbitrary nonlinear functions for the dynamics and measurements,

respectively. The filter initializes the state estimate and covariance and then

performs the unscented transform. The unscented transform assumes that a Gaussian

distribution is easier to approximate than an arbitrary nonlinear function [40]. A set

of sigma points χ are deterministically selected such that their mean and covariance

match that of the state. The UKF can be described using phases similar to the three

phases of the linear Kalman filter [39]. The sigma points are calculated from a priori

state statistics. A posterior mean and covariance are then determined from weighted

combinations of the sigma points. A Kalman gain is found using the cross-correlation

and innovation covariance matrices. The new state estimate is then found using

traditional Kalman update equations.

Rather than discussing the UKF routine in textual form, Algorithm 1, provided

at the end of this chapter, summarizes and outlines the mathematical steps for the

unscented filter from [39; 40]. The (κ, α, β) parameters are heuristically chosen

to allow tuning, but the literature provides some rules of thumb exist for tuning

these parameters [40]. The α parameter controls the spread of the sigma points, β

essentially controls the admission of prior knowledge in the filter, and κ is a scaling

parameter [41]. The UKF is presented here in a pseudo-classical form, but the
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unscented filter used in this research is that of Crassidis, et al., [16] and will be

discussed later in Chapter 3.

2.3 Survey on Attitude Estimation

The purpose of this section is to discuss with the reader a variety of estimation

methods available for satellite attitude determination. This brief survey is intended

as a top-level discussion that is important in discussing this research. Chapter 3

relies on a development of a UKF, Chapter 4 determines attitude by the single-frame

formulation, and Chapter 5 estimates MOI values that can be used to propagate

dynamics in Chapter 3’s filters. The author refers the reader to [24] for a thorough

and mathematically rigorous survey of attitude estimation methods.

To define orientation in a three-dimensional space, one needs three independent

parameters. A single vector measurement will provide two independent parameters,

as a unit vector constraint removes a DOF making the problem underdetermined,

while two vector measurements will provide at least four quantites, making the

problem overdetermined [22]. Attitude estimation techniques can be described as

deterministic, where two or more measurements are used to determine the attitude,

or as stochastic, where observations are used to recursively estimate the attitude with

statistical methods [22].

The following section describes commonly used attitude estimation techniques

found in the literature and used in this research. The presented survey will minimize

the use of mathematical descriptions and will provide textual discussion. A thorough

review of early estimation techniques to include linear Kalman filtering can be found

in [36].

2.3.1 Extended Kalman Filter.

The EKF is portrayed as the “workhorse” of satellite attitude determination [24],

where a linearization of the nonlinear system is performed about the current best state
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estimate. This linearization requires derivation and calculation of the Jacobian which

could be computationally expensive depending on the system. Minimal representation

EKFs have been used to estimate Rodrigues parameters and, consequently, MRPs

[42]; however, this EKF realization has not been widely implemented [24]. The

multiplicative EKF has been used to estimate attitude error vectors using quaternion

multiplication to maintain the unit norm constraint on the quaternions, and several

realizations exist depending on the attitude parameterization [24; 36]. A backwards

smoother can also be applied to the EKF by minimizing a loss function in what is

posed as a Maximum a Posteriori (MAP) estimation problem [24; 43]; however, the

backwards smoother comes with a greater computational cost than other estimators.

2.3.2 Solutions to Wahba’s Problem.

The previous section discussed the EKF, an attitude estimator that takes

advantage of the system dynamics to propagate and update state and covariance

estimates. This section focuses on the single frame estimation problem, where the

objective is to find the rotation matrix that minimizes a particular cost function

composed of unit vector measurements in two different reference frames. This section

will provide a broad discussion on the single frame estimation problem, while Chapter

4 will provide a mathematical development of numerical solution methods and discuss

more advanced solution techniques.

The attitude determination problem is either underdetermined or overdetermined

[22]. This formulation leads to computing a rotation matrix (attitude) to minimize

a loss (cost) function of these measurements. One loss function is often defined as

Wahba’s problem [20; 22; 24], and is given as

J
(
Rbi
)

=
1

2

N∑
k=1

wk
∥∥vkb −Rbivki

∥∥2
, (2.33)

where J is the loss function, k is the index for theN observations, wk is the observation

weight, vkb is kth vector of body frame components, vki is the kth vector of components

26



in the inertial frame, and Rbi is the rotation matrix to be found to minimize J . The

original problem posed by Wahba posited the cost function slightly different as

J
(
Rbi
)

=
1

2

N∑
k=1

∥∥vkb −Rbivki
∥∥2
, (2.34)

with the only difference between Eqs. (2.33) and (2.34) being the presences of sensor

weights.

There are three commonly referenced solutions to this problem: (1) numerical

minimization; (2) solution in the eigenspace known as the q-method; and (3) an

eigenspace approximation method [23]. We will now discuss each in the order listed.

The numerical minimization problem typically seeks to minimize Wahba’s

problem directly by numerically solving for the optimal rotation matrix. Although

the rotation matrix has nine components, the number of constraints require only three

numbers to solve for, and the rotation matrix can be parameterized by these three

numbers (e.g., Euler angles) [22]. This minimization generally involves the standard

appendage of Lagrange multipliers with the unity norm quaternion constraint, a

Jacobian, and a Newton-Raphson type iteration [22].

Davenport’s q-method [21; 22] rewrites Wahba’s minimization problem (min J(Rbi)

as a maximization of a gain function (max g(q)), where quaternions are the indepen-

dent variables. Appending the quaternion norm constraint leads to an eigenvalue

problem, where the eigenvector corresponds to the maximum eigenvalue [21; 22].

Shuster expanded Davenport’s q-method with QUEST in an attempt to decrease

the computational time required for eigenspace computations [23]. Rearranging

the gain function derived from Wahba’s problem, an initial guess for the optimal

eigenvalue can be approximated as the sum of the weights wk, and the corresponding

eigenvector can be iteratively determined. Often, very few iterations are required

for the QUEST solution to converge [23; 24]. However, when noise is present, more

iterations may be required and convergence to the non-maximum eigenvalue is a
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possibility discovered in [44] and discussed more in this research in Chapter 4. While

less robust than the q-method, QUEST has proven reliable and computationally

efficient [24]. Psiaki modified Shuster’s work with Extended QUEST [45] to allow

for the estimation of other states (e.g., gyro bias) by modifying the cost function and

implementing information filtering algorithms. As mentioned earlier, this section was

presented as part of this literature review as a primer. Chapter 4 will provide a more

in-depth development of the problem. Next, we will discuss the recursive UKF used

in Chapter 3.

2.3.3 Unscented Kalman Filter for Attitude Estimation.

Estimation methods that use the EKF are inherently reliant upon linearization

of the nonlinear system about the most current state estimate and neglecting higher

order terms [39]. The UKF is an extension of the linear Kalman filter that attempts

to circumvent short-comings of the EKF, such as reducing linearization errors [39].

The UKF assumes the fundamental premise that a Gaussian distribution is easier

to approximate than arbitrary nonlinear functions [24]. The UKF approximates the

state as a Gaussian random variable with a sample of sigma points based on the

current state estimate and covariance. The sigma points are propagated using the

system dynamics, and the a posteriori state mean and covariance are determined by

using the UKF. The UKF retains second-order accuracy over the EKF’s first-order

[24; 39]. Other advantages provided by the UKF over the EKF are its applicability to

nonlinear functions while avoiding the creation or computation of the Jacobian matrix

[16]. This allows an immediate extension to complex measurement-state relations

without the need to compute the Jacobian.

For the attitude estimation problem, numerical error in direct application of the

UKF yields a quaternion estimate that often violates the unit-norm constraint [24].

Vandyke, et al. [39], implement the three-element error quaternion in the state and
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solve for the fourth component using the unit norm constraint. Crassidis, et al. [24],

developed the USQUE algorithm where intermittent conversions are made between

Rodrigues parameters while also estimating gyro biases from the measurements [24].

As the primary estimation routines employed in the adaptive estimation portion of

this research, the UKF algorithm and USQUE methods will be discussed in more

detail in Chapter 3.

2.3.4 Miscellaneous Estimation Techniques.

Although this section has surveyed some of the more common attitude estimation

techniques, there are some less employed techniques worth mentioning. As an

alternative to the EKF, the two-step optimal attitude estimation performs time- and

measurement-updates to first-step estimates, while next minimizing a cost function

for the orthogonal attitude matrix [24].

Other approaches worth mentioning are particle filters and observers. Particle

filters form a broad field of estimators that are sub-optimal and use Monte Carlo

simulations to propagate and updates particles based off sequential importance

sampling or resampling. Nonlinear observers can also be applied when there is perfect

knowledge of the observations [24; 46].

2.4 Survey on Adaptive Estimation Techniques

2.4.1 Adaptive Estimation in General.

Estimation routines must be equipped to account for modeling and measurement

errors. Estimation confidence can be represented using statistical methods, such as

the covariance to correlate estimation error among the states. Vallado [38], Kay [47],

and Stengel [37] detail the fundamentals of estimation theory and its applications

to multiple engineering fields. Common optimal estimation techniques assume that

errors and noise are distributed in the Gaussian sense, and, do not easily allow

for changes in the system dynamics. Multiple model adaptive estimation (MMAE)
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approaches, though often referred to as sub-optimal, deviate from traditional filtering

techniques and allow for the inclusion of non-Gaussian noise and changes in the

dynamical modes of the system [37; 48].

Consider an observable system where there is uncertainty in some system

parameter. MMAE generalizes the principle of defining hypotheses based on

corresponding system characteristics (e.g., state transition matrices, measurement

noise, initial estimates), and generating a filter based on each hypothesis. The filter

that provides the “best” state estimate could then be used to identify the uncertain

parameter and likely operational mode [37]. An example of parameter estimation in

a nonlinear system can be found in Appendix C, where the author provides a nominal

scenario of a re-entering satellite being tracked by ground radar with the objective of

estimating the satellite’s ballistic coefficient.

Li and Jilkov provide an exhaustive survey of multiple model adaptive estimation

methods in [49]. Generally speaking, an adaptive estimation scheme can be divided

into four main parts:

1. Model-set determination: The selection and design of the models or parameters

included in the elemental filter bank.

2. Cooperation strategy : The interaction among the various filters in the bank, to

include the pruning or merging of models.

3. Conditional filtering : The recursive estimation process based on an assumed

probability distribution.

4. Output processing : The combination of individual filter estimates along with

conditional filtering outputs for the overall state and covariance estimate.

Figure 2.1 provides a visualization of Li’s interpretation of the the general adaptive

estimation algorithm flow [49]. Along with the four generalized segments of an
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adaptive estimation scheme, multiple model methods can also be viewed as having

evolved through three distinct generations of algorithms [49; 50]. The first generation

is the classical form most heavily used in this research. Pioneers of the first generation

include Magill [51; 52], Lainiotis [53], and Maybeck [54]. This first generation

used limited cooperation strategies and did not include pruning or merging. The

ground radar target tracking problem affected the rise of the second generation

of multiple-model algorithms, wherein there is interaction among the filters in the

bank [49; 55], but often requires a reformulation of the problem as a Markov system

with a specific probability transition matrix. The third and most recent generation

incorporates cooperation among the filters in the bank, where poor performing models

are removed (or pruned), and similar models are merged. This variable structure

adaptive estimation effort has been led by Li et al. [49].

The following sections will examine specifically how adaptive estimation schemes

have been applied to the areas of attitude dynamics and orbital mechanics.

2.4.2 Applications of Adaptive Estimation to Attitude Dynamics.

Rupp, et al. employed a bank of EKFs inside a MMAE architecture to detect

sensor and actuator faults [56]. In this bank of filters, each filter represents a system

model for a potential fault pattern. Simulation results for an aircraft aileron problem

indicated that the MMAE architecture developed is capable of detecting faults [56].

In a similar set-up, Tudoroiu et al. employ a interactive bank of UKFs to detect faults

in reaction wheel components of a spacecraft’s Attitude Determination and Control

System (ADCS) [57]. Their estimation algorithm is able to detect single, decoupled

faulty modes and multiple faults including unexpected changes in the power supply

bus and motor torque gain [57].

Bolandi and Saberi use a MMAE construct to tackle the attitude estimation

problem using star sensors with unknown noise levels [58]. The authors assume a
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Figure 2.1: Recreation of Li and Jilkov’s interpretation of the general multiple model

algorithm with two filters.

rigid spacecraft with a pyramid configuration of four reaction-wheels and use eight

models to investigate high and low noise values for attitude estimation about three

axes. Using this construct, the authors are able to estimate attitude with accuracy

on the order of 10−3 degrees during three slewing maneuvers [58].

Soken, et al. provided an in-orbit routine to estimate time-varying residual

magnetic moments using an adaptive Kalman filter in [59]. Soken’s filter adapts

the level of covariance to converge on Residual Magnetic Moment (RMM) estimates

following instantaneous changes [59]. Soken, et al., later sought a more autonomous

adaptive algorithm and proposed a MMAE technique to estimate the RMM for small

satellites [60]. Soken’s MMAE routine constructs a bank of EKFs assuming different
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levels of process noise and RMM estimates, and also proposes a novel likelihood

function that combines filter agility with steady state behavior [60].

Linares employed MMAE to characterize the behavior RSOs using light curve

data in [61]. A bank of multiple UKFs is used in the construct where each filter

assumes a different control profile. RSOs are classified as intact or fragments, passive

or active, and further characterized as spin stabilized, sun pointing, or Nadir pointing

[61] based on a control profile. The coupling between RSO attitude and torques from

non-conservative forces is exploited in [9], where light curve and orbit determination

observations are taken from ground sites and propagated using an UKF. The attitude

couplings enters the EOMs through a perturbing solar radiation pressure, and the

MMAE filter bank hypotheses assume different RSO shapes to estimate to area-to-

mass ratio for an object in GEO. A memoryless form of MMAE called “adaptive

likelihood mixtures” is also introduced in [9] and is shown to detect abrupt data

changes faster than other adaptive estimation methods. A comprehensive method

is shown in [62] fusing astrometric and photometric data to determine RSO shape,

attitude, and orbital states where two scenarios are successfully tested in the MMAE,

one where the true system model is in the bank, and the other where the true model

is a combination of models in the bank.

Lam and Crassidis developed an attitude determination system mixing various

EKF models with different state dimensions and showed the MMAE scheme can

reduce the effects of gyroscopic scale factors and misalignments compared to

traditional EKF schemes [63]. In [64], the same authors expand upon the work in [63]

to demonstrate the fusion of multiple sensor sources at differing sampling frequencies.

Hess et al. [19] investigated the application of MMAE to a satellite with

time-varying MOI using on-board sensors including a three-axis magnetometer and

gyroscopes. The work in [19] presented the preliminary results of the research
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discussed in Chapter 3 of this dissertation. Besides the work presented in [19],

adaptive estimation has not, to the knowledge of this author after an extensive

literature review, been previously applied to the attitude estimation of a spacecraft

with time-varying MOI.

2.4.3 Applications of Adaptive Estimation to Orbital Mechanics.

Recent work has shown some success in using MMAE to perform spacecraft

translational maneuver detection [12–15]. Lee and Hwang [14] examine planar

two-body Keplerian dynamics and characterize maneuvers by changes in classical

orbital elements from ground observations. A bank of EKFs is used assuming

different maneuvers in the system model, and numerical simulations demonstrated

success in detecting maneuvers. In [15], Lee and Hwang extend the work in [14] by

developing an adaptive estimation scheme with state-dependent probability transition

models, and successfully demonstrated the algorithm on a maneuvering geostationary

satellite. Goff et al. [13] investigated translational maneuver detection using

both Interacting Multiple Model (IMM) and variable state dimension filters. The

translational spacecraft state is tracked using ground observations, and once residual-

based heuristic thresholds are exceeded, the state is extended to include the thrust

vector as additional states. Two thresholds are recommended: (1) a filter-smoother

consistency test used in post-processing; and (2) a maneuver detection threshold,

similar to the Mahalanobis distance, used for more real-time detection based on

heuristics. The IMM construct assumes various levels of process noise, which, when

combined with covariance inflation, allows for success in maneuver detection and

thrust estimation [13].

2.5 Survey on Spacecraft Moment of Inertia Estimation

The rotational dynamics of a rigid body are primarily a function of the current

rotational state, external torques, and the MOI tensor. Pre-flight, the MOI is
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estimated, but there will inevitably be changes in the MOI due to the space

environment and operational needs. This section will briefly detail some of the open

literature that examines MOI estimation.

Tanygin and Williams [65] demonstrate successful estimation of both the MOI

and the spacecraft center of mass using coasting maneuvers and energy conservation

techniques. The work by Tanygin and Williams was also experimentally verified on the

STS-64 mission (September 1994) [65]. Similarly, conservation of angular momentum

arguments are used to develop in-flight MOI estimation for the Cassini spacecraft

using least-squares estimates when slewing telemetry is available [66]. The approach

used in [66] builds upon Peck’s work in [67]. Using angular momentum principles,

Peck removed the need to determine the uncertainty in energy dissipation [66], [67].

Norman, Peck, and O’Shaughnessy [68] combine both angular momentum and energy

conservation principles for on-board MOI and reaction wheel alignment estimation.

Thakur, Srikant, and Akella derive an adaptive attitude-tracking controller to

estimate and compensate for time-variance in the MOI tensor [30]. In [30] and [34],

Thakur, et al., also provide mathematical insight into the time-varying MOI that

will be discussed in Chapter 3. A passive adaptive control scheme is also introduced

in [46] assuming a constant MOI tensor by selecting a desired angular velocity for

persistent excitation of the estimator. The persistency of excitation (PE) condition

is found to promote exponential convergence of the MOI estimates and drives the

tracking error to zero.

VanDyke, et al., employ a dual UKF to estimate both the spacecraft attitude

and MOI [39]. The MOI parameter estimation is performed within a loop at each

iteration, where the current state estimate is used to determine the MOI parameters,

which are then fed back into the state estimator for the next iteration. Vandyke,

et al., compare their results to a baseline EKF algorithm, showing that the UKF
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consistently outperforms the EKF [39]. Further, the EKF demonstrated a tendency

to diverge with poor initial MOI estimates. VanDyke’s work assumed the MOI as

constant parameters to be estimated using the dual UKF. Additionally, Bordany et

al. [69] as well as Ferguson [70] approached the MOI estimation problem by using an

EKF to estimate mass properties and thruster characteristics.

Wright developed a methodology to estimate the full MOI tensor using maneuver

based estimation to approximate the MOI ellipsoid [71]. Wright implements a least-

squares cost function on an over-determined set of measurements and minimizes

the cost function by a static optimization method [71]. Wright’s methodology was

implemented on a terrestrial-based attitude simulator [72; 73] with significant MOI

estimate improvements over previous methodologies [71].

Sheinfeld and Rock [74] propose a framework to estimate the MOI of a tumbling

rigid body. The motivation in [74] is to incorporate the MOI estimate into the

dynamics for the capture of the tumbling spacecraft. Sheinfeld’s algorithm essentially

becomes an overdetermined least-squares problem. Sheinfeld and Rock also made an

important note that in the torque-free formulation of the problem, only the relative

MOI ratios can be recovered, and scale factors must be determined by exploiting

known torques and forces [74].

2.6 Survey on Heuristic Optimization

Heuristic optimization, or metaheuristics, is a generalized term for a subfield of

stochastic optimization, wherein a degree of randomness is exploited and employed

to some extent in the search for optimality [75]. This section is not intended to

survey, either conceptually or mathematically, the entire field of metaheuristics, but

rather focus on the two specific routines employed in Chapter 4 of this research. The

justification in this narrow focus can be found in Luke’s textbook [75], in which his list

of detailed algorithms numbers 137 in total. The author refers the reader to [75; 76]
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for an exhaustive survey of the field. Rather, this presented research attempts to

solve the single frame attitude problem by using heuristic optimization rather than a

classical method like Quaternion Estimation (QUEST), thereby avoiding singularities

and exploiting inventive optimization and estimation routines.

2.6.1 Particle Swarm Optimization.

Eberhart and Kennedy [77] developed the metaheuristic PSO algorithm. The

algorithm duplicates the random and unpredictable motion of a flock of birds

gathering food [78]. An initial swarm is selected by random assignment of position

and velocity vectors in the solution space to various particles. In this algorithm,

position refers to the design variables through which the cost is being optimized, and

velocity refers to updates to the design variables. An individual particle’s position

and velocity solution are updated by three mechanisms [78]:

1. Inertial update: an update proportional to the particle’s own velocity in the

previous iteration.

2. Cognitive update: an update to a specific particle that is directed toward the

best position known to that particle.

3. Social update: an update to a specific particle that is directed toward the best

position known to all particles in the swarm.

Mathematically, this update to a particle p’s position Xp at the sth iteration is

described using the global PSO version as [79]:

Xp(s) = Xp(s− 1) + Vp(s) (2.35)

where Vp(s) is the velocity calculated from the swarm at iteration s as

Vp(s) = χ [Vp(s− 1) + c1z1 (pbest −Xp(s− 1)) + c2z2 (gbest −Xp(s− 1))] , (2.36)

37



where c1 is the cognitive parameter, c2 is the social parameter, pbest is the best

position visited by the individual particle, gbest is the best position visited by the

entire swarm, z1 and z2 are uniformly distributed random numbers between zero and

one, and χ is a constriction factor given as

χ =
2

1− φ−
√
φ2 − 4φ

(2.37)

with φ = c1 + c2. The three updates are used to iterate on the swarm until the

a cost function differential is below a certain threshold, or through some similar

tolerance check. Work has been done to reduce the tendency of the PSO algorithm to

become stuck in local extrema, and to balance the weights of global and local searches

[78; 80; 81]. Moreso, constrained optimization problems can be handled by the use

of penalty functions, which assign additional costs to constraint violations [79; 82].

The PSO shares with other heuristic algorithms the ability to handle arbitrary cost

functions and nonlinear systems, but provides for a less complex implementation [83].

Particle swarm optimization has seen applications in both spacecraft trajectory

design as well as attitude control. In [78], Pontani and Conway use PSO to find

optimal low-thrust planetary transfers. Pontani and Conway continue in [84] to use

PSO to investigate optimal rendezvous trajectories in the Hill frame for relative

satellite motion. Showalter extends the application of PSO to trajectory design

to optimize spacecraft responsive theater maneuvers [79; 82]. Rahimi et al. [85]

applied PSO to the spacecraft reentry problem to determine initial conditions to

minimize total applied heating to the spacecraft. Hu et al. [86] applied and modified

the PSO algorithm to optimize parameters in a flexible satellite attitude controller.

Additionally, heuristic algorithms such as PSO have been employed to determine

optimal Proportional Integral Derivative (PID) controller gain settings [87].
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2.6.2 Genetic Algorithms.

The genetic algorithm was initially developed by Holland [88] while modeling

natural adaptive processes [82]. An initial population is generated from some

random distribution of the solution space, and future generations are generated

by combinations of previous parent generations. The primary two methods of

combination are selection and reproduction. Selection uses some problem specific

metric to evaluate which current population members are used as generation parents,

choosing the most optimal members. Reproduction involves mutation and crossover,

where in mutation small changes are made to individuals, and in crossover pieces of

parents solutions are combined [82].

The employment of genetic algorithms has seen success when there are a large

number of design variables [89; 90] and multiple optimization objectives [91]. Mosher

proposed the use of genetic algorithms in automating the search space of conceptual

satellite design [90], and found that the use of evolutionary heuristic algorithms

can expedite the design process. In [89] and [92] Thompson et al. implement

a GA to design a constellation from a systems engineering perspective to design

a disaggregated weather system with multiple objectives, constraints, and design

variables. In [91], Diniz employed the GA to design a navigation satellite constellation

minimizing dilution of precision and financial cost, while Abbate designed an imagery

constellation with a GA in [93].

The heuristic genetic algorithm has also been applied to singular spacecraft orbit

and trajectory design. Abdelkhalik and Mortari [94] used the GA solution as a warm

start to classical optimization methods to determine an optimal orbit for given targets

and imaging capabilities. Kim and Spencer [95] employ a GA to determine optimal

satellite rendezvous conditions.
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Alfriend et al. [96] posed the geosynchronous satellite servicing problem as a

traveling salesman problem. The traveling salesman problem is a classical problem

in mathematics determining the optimal path for a salesman to take given a certain

number of cities to travel among. Alfriend et al. found the optimal geosynchronous

servicing route by brute-force permutations on the possible servicing routes [96]. Zhou

et al. later used a genetic algorithm to determine the optimal servicing route, noting

that as the number of satellites to service increases, the approach in [96] becomes

numerically exhaustive when compared to the GA search pattern.

2.6.3 Conclusions.

In this chapter, we discussed a broad background on topics of importance to

the presented research. This chapter discussed classical rigid body dynamics, and

expanded on the state of the art of attitude estimation, adaptive estimation, and

heuristic optimization. Next, Chapters 3, 4, and 5 each present the three distinct

components of this dissertation. One will notice immediately some repetition due

to the dissertation format selected where Chapters 3, 4, and 5 stand as complete

discussions to themselves, ultimately becoming articles.
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Algorithm 1: Unscented Kalman Filter algorithm

Given x̂+
k−1 and covariance P+

xx,k−1 estimates at epoch time tk−1

1 Calculate sigma points from a priori mean and covariance:

χk−1 =

[
x̂+
k−1 x̂+

k−1 +
(√

(n+ κ) P+
xx,k−1

)
i

x̂+
k−1 −

(√
(n+ κ) P+

xx,k−1

)
i

]
using Cholesky decomposition and (.)i indicates row or column of the matrix.

2 Calculate weights, where α, β, κ are heuristically tuned:

Wm
0 = κ

n+κ

W c
0 = κ

n+κ + 1− α2 + β

Wm
i = W c

i = 1
2(n+κ) for i = 1, ..2n

3 Propagate sigma points individually using nonlinear state equations:

χ
(i)
k|k−1 = f

(
χ

(i)
k−1

)
4 Calculate propagated state:

ˆ̄x−k =
2n∑
i=0

Wm
i χ

(i)
k|k−1

5 Calculate propagated covariance:

P−xx,k =
2n∑
i=0

W c
i

(
χ

(i)
k|k−1 − ˆ̄x−k

)(
χ

(i)
k|k−1 − ˆ̄x−k

)T
+Qk−1

6 Transform sigma points to observations using nonlinear measurement transformation h():

Γ
(i)
k|k−1 = h

(
χ

(i)
k|k−1

)
7 Calculate expected measurement from sigma points

Ŷk =
2n∑
i=0

Wm
i Γ

(i)
k|k−1

8 Calculate the predicted observation covariance:

Pyy =
2n∑
i=0

W c
i

(
Γ
(i)
k|k−1 − Ŷk =

)(
Γ
(i)
k|k−1 − Ŷk

)T
+ Rk

9 Calculate the predicted (innovation) cross covariance:

Pxy =
2n∑
i=0

W c
i

(
χ

(i)
k|k−1 − ˆ̄x−k

)(
Γ
(i)
k|k−1 − Ŷk

)T
10 Update the estimate with traditional linear Kalman filter update equations:

ν = Y − Ŷk

Kk = PxyP
−1
yy

ˆ̄x+
k = ˆ̄x−k + Kkν

P+
xx,k = P−xx,k −KkPyyK

T
k
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III. Adaptive Estimation of Nonlinear Spacecraft Attitude Dynamics

with Time Varying Moments of Inertia

In this chapter, a series of scenarios were constructed to evaluate the performance

of various adaptive estimation routines in identifying and estimating a spacecraft’s

time varying MOI. To the extent of the author’s knowledge, this effort is the first

application of adaptive estimation to the case of a variable spacecraft MOI using

streaming attitude data. A methodology is developed to detect sudden MOI changes

using a bank of Unscented Kalman Filters as a numerical testbed for future real-world

implementation. A hybrid adaptive estimation algorithm to detect sudden parameter

changes in nonlinear systems is developed combining two state of the art routines.

As previously mentioned, the reader may notice repetition between the presented

motivation and background. Section 3.2 refers the reader to relevant background

material in Chapter 2. New material is presented beginning with the methodology in

Section 3.3.

3.1 Introduction and Motivation

The NSSS highlights the vital role of space in ISR, power projection, diplomacy,

and military operations [1]. Further, the NSSS details the increasingly congested,

contested, and competitive space environment and the need to maintain the strategic

national security advantages afforded by space. The growing global domain of space

operations requires an improvement in shared SSA, and the NSSS recommends the US

invest its knowledge base to foster SSA cooperation while protecting US and partner

space capabilities [1].

The SSA mission is becoming increasingly difficult when considering the trend

towards smaller space vehicles [3], discussion of disaggregated mission sets [4], as

well as debris created from collisions [5], ASAT testing [1], and catastrophic events.
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Further difficulties facing the SSA mission are the methods by which the JSpOC

tracks and propagates RSOs. In 2011, AFSPC tasked the NRC to “assess (their)

astrodynamics standards...and their effectiveness...”[6]. Nongravitational effects (e.g.,

solar radiation pressure, atmospheric drag) perturb the nominal Keplerian motion of

an object with a wide range of effects depending on the position and orientation

of the object. AFSPC employs a number of astrodynamics algorithms to generate

ephemerides with varying degrees of accuracy and inclusions of perturbing forces,

which directly effects computational time. The analytic models in the more commonly

known SGP4 and SP numerical integration techniques do not take into account certain

key satellite properties, such as attitude and shape, and additions of these states could

improve orbit predictions [6].

The NRC found that for the nonlinear governing equations in astrodynamics,

advanced estimation techniques should be employed to characterize state estimates

and their uncertainties [6]. Space is a data-sparse environment, and, consequently,

convergence times for state estimators and filters can be of considerable duration.

Multiple model filters have been shown to be capable of converging on state

estimates with limited data [6; 62]. Moreover, multiple model techniques have

also demonstrated operational efficacy in estimating the states of maneuvering

missiles and aircraft where sudden changes in dynamics are experienced [6; 10; 11].

Sudden dynamical changes are not always deterministic. Unplanned changes to

spacecraft’s structure can result from debris, external actors, or hardware faults.

For example, the recent 2016 loss of the JAXA X-ray science satellite Hitomi has

been attributed to human error, possible payload deployment faults, and attitude

control logic malfunction [8]. Adaptive estimation techniques applied to the available

streaming attitude data could have potentially identified the fault through various

filters assuming different MOI modes.
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3.2 Background

The current research on adaptive estimation examines the fields of spacecraft

attitude dynamics, time-varying moments of inertia, attitude estimation, multiple

model adaptive estimation, and stochastic filtering. For background information,

the reader is referred to Section 2.1 regarding attitude dynamics, Section 2.1.5 for

time-varying moments of inertia, Section 2.3 for attitude estimation, Section 2.4 for

multiple model adaptive estimation, and Section 2.2 for stochastic filtering.

3.3 Methodology

The following section will provide the methodology and mathematical algorithms

for the numerical experiments validating the use of adaptive estimation for spacecraft

attitude determination and MOI estimates. Crassidis and Markley’s unscented

quaternion estimator is presented, followed by a discussion of the various adaptive

estimation routines used. Next, the magnetometer and gyro sensor model used in

this research is introduced. The spacecraft MOI model is developed, and the flow of

numerical experiments is discussed.

3.3.1 Unscented Quaternion Estimation.

Crassidis and Markley previously constructed a UKF routine for attitude

estimation that is parameterized by the quaternion called the Unscented Quaternion

Estimtor (USQUE) [16]. The standard UKF algorithm as established by Julier

and Uhlmann [40; 41] is employed in USQUE; however, as the predicted attitude

quaternion is a weighted sum of filtered estimates, there is no guarantee of satisfying

the quaternion unit-norm constraint [16]. Thus, intermediate conversions between

error quaternions and error Generalized Rodrigues Parameters (GRPs) are used to

maintain the unit-norm constraint. Although the Extended Kalman Filter (EKF)

has been the “workhorse” of attitude estimation, Crassidis offers four advantages of

the UKF over the EKF: (1) the USQUE has a lower expected error than the EKF,
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(2) application to functions that are not differentiable, (3) avoidance of the Jacobian

derivation, and (4) applicability to higher-order expansions than the EKF [16]. This

section will briefly detail the USQUE algorithm, while the fundamentals of unscented

filtering, such as the 2n + 1 sigma point calculation, can be found in the works by

Julier and Uhlmann [40; 41] and are also detailed in Algorithm 1 in Chapter 2. The

estimation routine presented here will vary from the classical USQUE method in that

the angular velocities are being included as states. Further, for initial results in this

research, sensor gyroscopic measurements are assumed as unbiased, thus precluding

the need to include bias estimates as sigma points. A significant portion of the

USQUE algorithm relies on quaternion mathematics which are briefly described in

this section; for a more thorough overview of quaternion operations, the reader is

directed to Shuster [27] or Arribas, et al. [97].

First, a set of sigma points corresponding to the error GRPs χδpk is constructed,

and then converted to local error quaternions. Denoted by δq−k (i), the local error

quaternion associated with the ith error GRP at time step k is constructed as [16]

δq−k (i) =

δ%−k (i)

δq−4k(i)

 . (3.1)

The local error quaternion components δ%−k (i) and δq−4k(i) are calculated as [16]

δ%−k (i) = f−1
[
a+ δq−4k(i)

]
χδpk (i)

δq−4k(i) =
−a
∥∥∥χδpk (i)

∥∥∥2

+ f

√
f 2 + (1− a2)

∥∥∥χδpk (i)
∥∥∥2

f 2 +
∥∥∥χδpk (i)

∥∥∥2

. (3.2)

Here, a is a parameter between 0 and 1, f is a scaling factor, and i = 0, 1, ...2n

represents the (2n+1) sigma points. Both of the a and f parameters can heuristically

be tuned for the filter, while setting f to 2(a+ 1) yields attitude error covariance on

the order of roll, pitch, and yaw angle errors [62]. Having a representation of the
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local error quaternion, a quaternion sigma point can be constructed using quaternion

multiplication

q̂−k (i) = δq−k (i)⊗ q̂−k (0), (3.3)

where q̂−k (0) is the a priori quaternion estimate resulting from propagating the

previous time step. The quaternion multiplication is taken as

qa ⊗ qb =

[
Ψ(qa) qb

]
qb. (3.4)

Having assembled a set of sigma points now consisting of quaternions and angular

velocities, the sigma points are propagated through the nonlinear system dynamics

such that

χ̇(i) = f(χ(i), q̂(i)), (3.5)

where f(·) represents the assumed dynamics of the system. For the rigid body example

with constant MOI, this would simply be Euler’s equations. The mean quaternion

sigma point q̂−k+1(0) from the propagation is stored, and serves as the a priori estimate

for the next time step k + 1. The error quaternion associated with each propagated

quaternion sigma point is also calculated from q̂−k+1(0) using

δq̂−k+1(i) = q̂−k+1(i)⊗
[
q̂−k+1(0)

]−1
. (3.6)

The conjugate or inverse quaternion [q]−1 is given as

[q]−1 =

−%
q4

 . (3.7)

Note that, as expected, a quaternion times its inverse produces the identity

quaternion. The error GRP points at time step k + 1 can now be determined from

δp−k+1(i) = f
δ%−k+1(i)

a+ δq̂−4k+1
(i)
. (3.8)

Now there is a complete set of sigma points with care taken to maintain a unit norm

constraint. The sigma points are now implemented in the standard UKF state and
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covariance estimation scheme, briefly detailed here. The weighted sum of sigma points

yields the mean state estimate as [62]

x̂−k+1 =
2n∑
i=0

Wmean
i χk+1(i), (3.9)

and the state covariance Pxx
k+1 is calculated from a weighted sum as

Pxx
k+1 = Qk+1 +

2n∑
i=0

W cov
i

(
χk+1(i)− x−k+1

) (
χk+1(i)− x−k+1

)T
, (3.10)

where Qk+1 is the process noise covariance. The weights Wmean
i and W cov

i can be

heuristically chosen for proper tuning, or to match higher order statistical moments.

The information gained from the available measurements can now be used to

innovate the state estimate. Let the measurement state vector be denoted as ỹ. Each

sigma point construction (consisting of quaternions rather than GRPs) can be used

to compute expected measurements using a given measurement relation h(). For the

ith sigma point, the corresponding output can be given as [62]

γk+1(i) = h
(
χk+1(i), q̂−k (i)

)
. (3.11)

Similar to Eq. (3.9), the output estimate can be computed as a weighted sum as

ŷ−k+1 =
2n∑
i=0

Wmean
i γk+1(i). (3.12)

The difference between the actual measurement vector ỹk+1 and the output estimate

ŷ−k+1 is the residual νk+1 for this time step. The residual covariance Pνν
k+1 and cross-

correlation Pxy
k+1 covariances are now given as [62]

Pνν
k+1 = Rk+1 +

2n∑
i=0

W cov
i

(
γk+1(i)− ŷ−k+1

) (
γk+1(i)− ŷ−k+1

)T
Pxy
k+1 =

2n∑
i=0

W cov
i

(
χk+1(i)− x−k+1

) (
γk+1(i)− ŷ−k+1

)T . (3.13)

The remaining steps now exploit the information available in the estimate covariances

to calculate a Kalman gain to update the state estimate. The Kalman gain is
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computed using the classical relation

Kk+1 = Pxy
k+1

(
Pνν
k+1

)−1
, (3.14)

and the state (with attitude represented as error GRPs) is updated accordingly by

x̂+
k+1 = x̂−k+1 + Kk+1νk+1, (3.15)

The last step now involves transforming the newly updated error GRP to update

the quaternion estimate. Already having the a priori quaternion estimate q̂−k+1(0),

the error GRP is converted to the error quaternion δq̂k+1 using Eq. (3.2), and then

producing the updated quaternion with

q̂+
k+1 = δq̂k+1 ⊗ q̂−k+1(0). (3.16)

3.3.2 Adaptive Estimation Methods.

The following section will mathematically describe the adaptive estimation

routines used in this research. The classical MMAE algorithm is first detailed,

followed by Linares’ modification of the recursive weighting scheme in the Adaptive

Likelihood Mixture (ALM) method. Next, Soken’s modification of the MMAE

Probability Distribution Function (PDF) is presented where sudden changes are

sought by implementing a psuedo low-pass filter in the scheme. Finally, a hybrid

of the Soken and ALM scheme developed in this research is presented and discussed.

3.3.2.1 Classical Multiple Model Adaptive Estimation.

In this section, the MMAE algorithm will be shown following Stengel [37],

Marschke and Crassidis [98], and Linares [62]. Given a vector of parameters p that is

assumed constant during a particular sampling or adaptation interval, the goal of the

(MMAE) process is to determine the conditional PDF of the jth element of p given

the current measurement ỹk. The conditional probability of a particular parameter

or assumed dynamics model given a measurement sequence will be the metric to
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select likely models. The measurement vector enters the bank of filters, each with its

own assumed model and output estimates. Additionally, a filter-specific covariance

estimate will be output as in most standard estimation routines.

The following probability equations use the convention that a superscript (l)

indicates the value is associated with model (l), while a subscript (k) indicates

the variable is associated with time-step k. For example, x̂
(l)
k is the state estimate

associated with model (l) at time-step k. The conditional probability of an individual

bank model given a measurement vector at time k can be found via Bayes’ rule and

Kalman recursion as [98]

p
(
p(l)|ỹk

)
=

p
(
ỹk|x̂

−(l)
k

)
p
(
p(l)|ỹk−1

)
M∑
j=1

[
p
(
ỹk|x̂

−(j)
k

)
p
(
p(j)|ỹk−1

)] , (3.17)

where M is the number of filters in the bank. There is an inherent recursive relation

in the algorithm, as p
(
p(l)|ỹk

)
is a direct function of p

(
p(l)|ỹk−1

)
. The p

(
ỹk|x̂

−(l)
k

)
term is the likelihood of an observed measurement given the estimated state from

each filter. A standard PDF used in the literature is a multivariate Gaussian using

the residuals ν and estimated innovation covariance Pνν , given as

p
(
ỹk|x̂

−(l)
k

)
=

1

(2π)n/2 det(P
(l)
ν,k)

1/2
exp

(
−1

2
ν

(l)T
k P

−1(l)
νν,k ν

(l)
k

)
. (3.18)

Eq. 3.18 is a multivariate Gaussian distribution that is centered around a zero-mean

residual vector, implying that the PDF is examining where the n-dimensional residual

vector lies along the n-dimensional normal distribution with a given covariance.

Eq. 3.18 is computationally less expensive for single state measurements as matrix

inversions are reciprocals, and the determinant of a scalar is a scalar. Whereas for

an n-dimensional residual vector, the covariance inversion requires approximately

O(n3) operations, and the covariance determinant also requires approximately O(n3)

operations. Further examining Eq. (3.18), models with lower residuals will increase
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the probability, while smaller values of det(P
(l)
νν,k)

1/2 (that is, a smaller variance) will

also increase the likeliness of a specific model. Near-singular covariance values will

provide difficulties for the algorithm.

The conditional probabilities can now be cast into weights to produce weighted

state estimates and covariances as a function of the multiple models in the bank. A

common recursion relation for the calculation of the weight w
(l)
k vector is

w
(l)
k = w

(l)
k−1p

(
ỹk|x̂

−(l)
k

)
. (3.19)

An initial value for the weight must be assumed, and equal weighting is often

appropriate unless prior knowledge is known to initialize otherwise. Weighted sums

of the filter estimates can now be used to estimate the conditional mean state x̂k,

parameter estimate p̂k, and state error covariance P−xx,k from the following

x̂k =
M∑
l=1

w
(l)
k x̂

−(l)
k

p̂k =
M∑
l=1

w
(l)
k p(l)

Pxx
k =

M∑
l=1

w
(l)
k

[(
x̂
−(l)
k − x̂−k

)(
x̂
−(l)
k − x̂−k

)T
+ P

−(l)
xx,k

]
. (3.20)

Eq. (3.20) concludes the estimation routine at time-step k. The new state and

covariance estimates are then used as inputs for the next iteration. The covariance

relations can provide bounds on the parameter estimates in terms of standard

deviations σ. The estimation outputs allow for easy visualization of a time history of

the state estimate and its 3σ boundaries. The bank of filters in the MMAE framework

can assume a variety of modes to capture the parameter, but computational time will

increase with additional hypotheses. Figure 3.1 provides a visualization of the classical

MMAE algorithm.
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Figure 3.1: Visualization of the classical MMAE algorithm.

3.3.2.2 Adaptive Likelihood Mixtures.

Linares modified and presented the likelihood functions of the classical MMAE

scheme in an algorithm proposed as ALM [9]. The main motivation in the ALM

development was to decrease the memory of the likelihood ratios. Noting in

Eq. (3.19), the weighting calculation is recursive and has a memory that retains

information from the beginning of the adaption. The ALM method innovates the

MMAE scheme by weighing models using current performance and measurements,

and by reinitializing each filter in the bank by the weighted state and covariance

estimates [9]. Each model is initialized with an equal weighting and probability, and

the current weight ascribed to model (l) at time step (k), rather than being recursively

calculated, is found by

w
(l)
k = p

(
ỹk−1|x̂+(l)

k−1

)
, (3.21)
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where the PDF in Eq. (3.21) is the Gaussian calculation from Eq. (3.18). The

recursion is removed now using only the current PDF values, and the weights are

normalized by

w
(l)
k =

w
(l)
k∑M

j=1 w
(j)
k

, (3.22)

where j is the elemental filter index. The state and covariance estimates are then

found using the MMAE formulation in Eq. (3.20), and the individual filter state

and covariance estimates at time step (k + 1) are reset as the weighted state and

covariance estimates from time step (k). Linares’ ALM development now provides a

reduced memory multiple model scheme that is better suited for sudden changes in

system dynamics over long propagation intervals than the classical MMAE algorithm

[9]. However, for short propagation intervals the ALM scheme will tend to equalize

models [9].

3.3.2.3 Soken’s Likelihood Function.

In [60], Soken et al. modified the likelihood function of the classical MMAE

scheme to account for steady-state errors and the agility of the filter. The remainder

of the classical MMAE algorithm remains the same as described in Section 3.3.2.1.

Using the notation from the current research, Soken’s likelihood function takes the

form

p
(
p(l)|ỹ−(l)

k

)
=

exp
(
−q(l)

i,k − q
(l)
2,k

)
∑M

j=1

[
exp

(
−q(j)

i,k − q
(j)
2,k

)] , (3.23)

where q
(l)
1,k is a measure of steady-state error and q

(l)
2,k accounts for the agility of

the filter [60]. Here, q
(l)
j,k is a function input and should not be confused with the

quaternion or components of the quaternion. The steady-state error is accounted

for by first establishing a moving window of size µ. Soken’s algorithm incorporates

the parameter as a state, and since the current research decouples the parameter

from the state vector, Soken’s algorithm must be modified slightly. This modification
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produces a novelty in that the state dimension remains the same, and the Soken

scheme is adapted to decouple the parameter from the state vector. A moving average

parameter estimate p̂mean,k is defined as the average of the weighted estimates over

the previous µ time steps as

p̂mean,k =
1

µ

k∑
j=k−µ+1

p̂j. (3.24)

Given that each filter is assuming a parameter value p(l), a scalar filter specific error

metric can be calculated as

Z
(l)
k =

(
p̂mean,k − p(l)

)T (
p̂mean,k − p(l)

)
. (3.25)

The error metric is then filtered with a pseudo low-pass filter scheme

g
(l)
1,k = λ1g

(l)
1,k−1 + (1− λ1)Z

(l)
k , (3.26)

where λ1 controls the the amount of recursiveness and impact of the error metric.

Lastly, the likelihood function input is scaled to fall into a range [0, a] as

q
(l)
1,k =

a
(
g

(l)
1,k −min (g1,k)

)
max (g1,k)−min (g1,k)

(3.27)

The filter agility is accounted for by examining the individual filter innovation

covariances by the metric

En
(l)
k =

1√
M

1Tm

[
HP

(l)
k−1/kH

T + Rk

]−1/2 [
ỹk − ŷ(l)

]
, (3.28)

where M is the number of filters in the bank, 1m is an M × 1 vector of ones, and

the other values have previously been described. However, Soken’s innovation metric

is prescribed for an EKF and must be adopted for the current UKF implementation.

The first bracketed term in Eq. (3.28) is the innovation covariance Pνν , and the

second bracketed term in Eq. (3.28) is the innovation or residual ν. Using the UKF

notation, the innovation metric is then calculated as

En
(l)
k =

1√
M

1TmP
(l)−1/2
νν,k ν

(l)
k . (3.29)
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A pseudo low-pass filter is then applied to the innovation metric, and a recursive

relation gives non-normalized value

g
(l)
2,k = λ2g

(l)
2,k−1 + (1− λ2) En

(l)
k , (3.30)

where λ2 is a tuning parameter similar to λ1. A scaling parameter β is then introduced

such that the likelihood function input is

q
(l)
2,k =

|g(l)
2,k|
β

. (3.31)

The likelihood inputs g
(l)
1,k and g

(l)
2,k are calculated for each filter (l) and used to

determine the normalized likelihood value.

3.3.2.4 A Hybrid Likelihood Mixture Method.

A portion of this research examined the combination of the ALM algorithm

described in Section 3.3.2.2 and the Soken likelihood model described in Section

3.3.2.3. This hybrid likelihood mixture method replaces the likelihood quotient

calculation in the classical MMAE structure with the Soken likelihood calculation

discussed previously. Additionally, rather than each filter self-initializing with

its own state and covariance estimates, the filters are all re-initialized with the

current weighted state and covariance estimate from the adaptive estimation process.

Additionally, the model weights are calculated using the memoryless method provided

by ALM. The hybrid likelihood mixture method is summarized in Algorithm 2.

3.3.3 Sensor Model.

To simulate available on-orbit measurements, this numerical experiment assumes

the availability of Three Axis Magnetometer (TAM) data as well as gyroscope data

providing angular rates. Deterministically speaking, a single TAM is typically not

capable of providing attitude estimates, but in a recursive stochastic filtering sense,

a single TAM is able to allow estimate convergence [99].
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Algorithm 2: Hybrid Likelihood Mixture Method

Given x̂+
k−1, measurement vector ỹk, and covariance P+

xx,k−1 estimates at time tk−1 and a

filter bank of multiple models

1 Initialize filters 1, 2, ...,M with state and covariance estimates

2 For filters 1, 2, ...,M , calculate residuals ν, innovation covariance Pνν , state and covariance

estimates according to individual filter rules

3 Calculate likelihood values p
(
p(l)|ỹ−(l)k

)
according to Eq. (3.23)

4 Calculate model weights w
(l)
k according to Eqs.(3.21) and (3.22).

5 Calculate weighted state, covariance, and parameter estimates for time step tk using Eq.

(3.20).

6 Re-initialize filters 1, 2, ...,M with weighted estimates, repeat algorithm.

To demonstrate a proof of concept in this research, an unbiased TAM is used

along with inertial gyroscopes. The TAM measures the magnetic field of the

Earth in the spacecraft body frame, while the gyroscopes provide the angular rate

measurements with respect to an inertial frame. The Earth’s magnetic field can be

expressed in the spacecraft’s orbital frame with a simple dipole model as [99]

B1(t) =
Me

r3
0

[cω [cos (ε) sin (i)− sin(ε) cos (i) cos (ωet)]− sω sin (ε) sin (ωet)]

B2(t) = −Me

r3
0

[cos(ε) cos(i) + sin(ε) sin(i) cos(ωet)]

B3(t) =
2Me

r3
0

[sω [cos (ε) sin (i)− sin(ε) cos (i) cos (ωet)] + 2cω sin (ε) sin (ωet)]

. (3.32)

where Me is the magnetic dipole moment of the Earth, r0 is the orbital radius of the

spacecraft, ω0 is mean motion of the spacecraft, i is the orbital inclination, ε is the

magnetic dipole tilt, cω is cos (ω0t), sω is sin (ω0t) and ωe is the spin rate of the Earth.

Since this magnetic field is given in the orbital frame and the spacecraft measures the
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magnetic field expressed in the body frame, the TAM measurement is then given as

ỹTAM = RBO(q(t))


B1(t)

B2(t)

B3(t)

+ vTAM , (3.33)

where RBO is the rotation matrix from the orbital frame to the spacecraft body frame

using the current quaternion, and vTAM is zero-mean Gaussian measurement noise

with covariance assumed as σ2
TAM13×3.

As the rotation matrix RBO is a function of the quaternion defining the

orientation of the body frame with respect to the orbital frame, the quaternion

dynamics must be modified slightly to include the rotation of the orbital frame. The

EOMs used for the quaternion are now [99]

q̇1(t) =
1

2
[ω1(t)q4(t)− ω2(t)q3(t) + ω3(t)q2(t) + ω0(t)q3(t)]

q̇2(t) =
1

2
[ω1(t)q3(t) + ω2(t)q4(t)− ω3(t)q1(t) + ω0(t)q4(t)]

q̇3(t) =
1

2
[−ω1(t)q2(t) + ω2(t)q1(t) + ω3(t)q4(t)− ω0(t)q1(t)]

q̇4(t) =
1

2
[−ω1(t)q1(t)− ω2(t)q2(t)− ω3(t)q3(t)− ω0(t)q2(t)]

, (3.34)

and the rotation matrix RBO is given as [99]

RBO =


q2

1 − q2
2 − q2

3 + q2
4 2 (q1q2 + q3q4) 2 (q1q3 − q2q4)

2 (q1q2 − q3q4) q2
2 − q2

1 − q2
3 + q2

4 2 (q2q3 + q1q4)

2 (q1q3 + q2q4) 2 (q2q3 − q1q4) q2
3 − q2

1 − q2
2 + q2

4

 . (3.35)

TAM measurements can now be generated using Eqs. (3.32) - (3.35) and corrupted

with the appropriate Gaussian noise to simulate TAM measurements observed by the

spacecraft.

Additionally, gyroscopic measurements are assumed available. Inertial gyros will

also be employed on-board for the attitude estimation routine. Inertial gyros provide

measurements of the angular velocity of the spacecraft body frame with respect to

56



the inertial frame, while expressed in the body frame. For this numerical experiment,

the gyros are assumed to have zero-bias, although the USQUE method [16] assumes

a bias whose time rate derivative is zero-mean Gaussian. The gyros will, however, be

susceptible to measurement noise. The measurements observed by the spacecraft can

then be expressed as

ỹGYRO = ω̃ = ω + vGYRO, (3.36)

where ω is the true angular velocity and vGYRO is zero-mean Gaussian measurement

noise with covariance assumed as σ2
GYRO13×3. The true angular velocity will be

simulated through numerical integration, while the appropriate noise will be added

to produce the observations.

To summarize the preceding measurement discussion, the complete measurement

vector is given as

ỹ =

 ỹTAM

ỹGYRO

 . (3.37)

The observation function h(x) is taken as the TAM measurement function and an

identity multiplication on the angular velocities (assuming direct observation of the

angular rate states that is only corrupted by the measurement noise).

3.3.4 Spacecraft Moment of Inertia Model.

A spacecraft model with separating and rotating payloads was developed by Leve,

et al. [100] and is replicated here. Assume a particular spacecraft consists of a main

bus, three separating payloads, a potentially rotating solar panel, and a large payload

capable of large gimbal angles. A graphical depection is provided in Figure 3.2.

The MOI I of the overall system is taken as the sum of the individual components

as

I = IB + IS + ISP + IPL, (3.38)
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Figure 3.2: A notional diagram of a spacecraft with deployable rotating payload,

solar panels, and (not shown) separable payloads used in Chapter 3 for numerical

simulations [100].

where IB is the primary bus MOI in the body frame, IS is the total MOI of the

separable payloads, ISP is the MOI of the solar panel, and IPL is the MOI of a

deployable, gimbaling payload. The primary bus MOI will be taken as a constant in

the body frame, and the other components will be expressed in the body frame. The

rotation of the MOI matrix from one frame to another is known to require a pre- and

post-matrix multiplication.

The MOI of the individual components will be calculated using the skew-

symmetric formulation of the parallel axis theorem. The total MOI contribution

58



of the separable payloads is

IS =
3∑
i=1

(
IS,i −mS,ir̂

×
S,ir̂
×
S,i

)
, (3.39)

where IS,i is the MOI of the payload expressed in the body frame, mS,i is the

mass of payload i, and r̂×S,i is the skew-symmetric matrix consisting of the constant

moment arm for separable payload i until separation. Separations will be treated as

discontinuous changes in the payload mass and MOI and it is assumed translational

motion is either unaffected or is controlled to remain nominal on-board the spacecraft.

The MOI contributions of the solar panel and rotating payload follow a similar

development. The MOI matrix for the individual components is expressed in their

respective references frames, and requires a rotation to the spacecraft body frame.

Additionally, moment arms that are constant in the component frame are not

necessarily constant when the payloads are rotating and also require a rotation.

Finally, the skew-symmetric form of the parallel axis theorem is applied. For the

solar panel SP and rotating payload PL, the MOI matrices are calculated using

ISP = RB/SP

(
ISP,0 −mSP r̃×SP r̃×SP

)
RT
B/SP −mSP r̄×SP r̄×SP

IPL = RB/PL

(
IPL,0 −mPLr̃×PLr̃×PL

)
RT
B/PL −mPLr̄×PLr̄×PL

, (3.40)

where RB/SP and RB/PL are the time-varying rotation matrices between, respectively,

the body and solar panel frame and the body and rotating payload frame, mSP and

mPL are the masses of the solar panel and rotating payload, ISP,0 and IPL,0 are the

MOI of the solar panel and rotating payload in their respective reference frames, r̃×SP

is a skew-symmetric matrix of a constant moment arm in the solar panel frame, and

r̃×SP is a skew-symmetric matrix of a constant moment arm in the spacecraft body
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frame. The time-varying rotation matrices are defined as

RB/SP = R2 (θSP ) R3 (δ) =


cos (θSP ) 0 − sin (θSP )

0 1 0

sin (θSP ) 0 cos (θSP )




cos (δ) sin (δ) 0

− sin (δ) cos (δ) 0

0 0 1



RB/PL = R2 (θPL) =


cos (θPL) 0 − sin (θPL)

0 1 0

sin (θPL) 0 cos (θPL)


.

(3.41)

Here, θSP , δ, and θPL are the solar panel input angle, solar panel gimbal angle, and

rotating payload input angle. The time derivatives of the rotation matrices can be

found by simply differentiating component-wise or calculated in matrix form as

ṘB/SP = Ṙ2 (θSP ) R3 (δ) + R2 (θSP ) Ṙ3 (δ)

ṘB/PL = Ṙ3 (θPL)

. (3.42)

The time variation in the spacecraft MOI can now be found by differentiating

Eq. (3.38) as

İ = İB + İS + İSP + İPL. (3.43)

The primary bus MOI is taken as a constant such that İB is zero, and the separable

MOI changes are treated as discontinuities, so the İS term is neglected. The MOI

time dependency is now only a function of the solar panel and rotating payload MOI

contributions, which are primarily functions of the direction cosines between the body

and component frames. For brevity, the following MOI terms are defined

I′SP = ISP,0 −mSP r̃×SP r̃×SP

I′PL = IPL,0 −mPLr̃×PLr̃×PL

, (3.44)

such that the solar panel and payload MOI are more compactly expressed as

ISP = RB/SP I′SPRT
B/SP −mSP r̄×SP r̄×SP

IPL = RB/PLI′PLRT
B/PL −mPLr̄×PLr̄×PL

. (3.45)
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The time-derivative can now be calculated as

İSP = ṘB/SP I′SPRT
B/SP + RB/SP I′SP ṘT

B/SP

İPL = ṘB/PLI′PLRT
B/PL + RB/PLI′PLṘT

B/PL

. (3.46)

The time-dependency of the spacecraft MOI is entirely a function of the variation of

the direction cosines or, when applicable, the instantaneous payload separation. This

coupling will allow for identification of solar panel and rotating payload inputs based

on either a filter bank consisting of either possible payload input scenarios or a bank

consisting of possible MOI configurations based on the current payload configuration

of the spacecraft. Further, a note must be made concerning the numerical difficulties

now faced. Care must be taken to ensure the principal MOI satisfies the triangle

inequality for each MOI model for all time. Additionally, considering computation

time, a single UKF propagates 2n+1 sigma points. Form filters in the bank, m(2n+1)

points are now being propagated. When the MOI is included for as a time-varying

3× 3 matrix, n increases to n+ 9, and the computation costs increase accordingly.

3.3.5 Descriptions of Numerical Experiments and Common Pa-

rameters.

The following section will provide a description of the numerical experiments

performed in this research. Three main scenarios are presented. The first

demonstrates the utility of adaptive estimation is determining principal MOI ratios.

The second scenario investigates the correct identification of payload input commands.

The final scenario investigates a series of payload separations and a comparative study

of various adaptive estimation schemes and their ability to detect sudden structural

changes. Parameters that differ will be discussed in Sections 3.4.1 through 3.4.3

such as filter banks and initial conditions. The TAM measurements are assumed

to be Gaussian distributed with a noise value (σTAM) of 300 nT [19]. The gyro

measurements are assumed Gaussian distributed with noise values (σω) detailed
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in their respective results section. The measurement noise matrix Rk is assumed

constant as

Rk =

σ2
TAM · 13×3 03×3

03×3 σ2
ω · 13×3

 . (3.47)

The process noise in this experiment adapts a modified version of the process noise

given in the USQUE method, where Qk+1 is given as [16]

Qk+1 =

σ2
ω ·∆t · 13×3 03×3

03×3 σ2
ω ·∆t · 13×3

 . (3.48)

Note, the process noise in the USQUE method also has a gyro bias term [16], but

this bias term is assumed zero in this research as the gyro is assumed unbiased. As

an initial testbed, this is valid, as future real-world experiments will examine direct

quaternion measurements. The spacecraft is assumed to be in LEO at a 400 km

altitude. Only Keplerian two-body motion is considered, and perfect knowledge of

the orbital parameters is assumed for the magnetometer relations. Other parameters

used in the magnetometer simulation are given in Table 3.1. Individual scenario initial

conditions will be described in their respective results section.

3.3.6 Nominal Flow of Numerical Experiments.

Truth data will be generated from a set of initial conditions and the true dynamics

model through numerical integration. The governing truth model will be determined

by the specific numerical experiment being performed. Having simulated the true

state and parameter values, TAM and gyroscopic measurements will be calculated

using the measurement relation h(x). The true measurements will then be corrupted

by a given amount of measurement noise that is distributed zero-mean Gaussian.

These measurements now serve as input to a parallel bank of filters, each assuming a

different dynamics model that will be described in the specific experiment. Although

each filter assumes a different dynamics model, the general form of each filter will
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Table 3.1: Simulation parameters used for magnetometer measurements and orbital

characteristics.

Parameter Value

Magnetic Dipole Tilt (deg) 11.7

Magnetic Dipole Moment (Wb-m) 7.943E15

Orbital Altitude (km) 400

Orbital Inclination (deg) 45

Gravitational Parameter (m3/s2) 3.9860E14

Earth Rotational Rate (rad/s) 7.29E − 5

follow the USQUE method, where the sigma points are numerically propagated to

maintain the unit quaternion norm according to the specific filter’s assumed dynamics.

The residuals and innovation covariance from each filter will then be input to the

particular adaptive estimation scheme for evaluation.

3.3.7 Comparison Metrics.

Numerical simulations immediately provide a truth comparison, and there are

immediate error metrics available. The error in the quaternion estimate qe will

be taken as the 2-norm of difference between the identity quaternion q1 and the

quaternion product of the quaternion estimate q̂ at time step k and the inverse of the

true quaternion at the same time step. Mathematically, this is expressed as

qe(tk) =
∣∣∣∣q1 − q̂(tk) · q−1(tk)

∣∣∣∣ . (3.49)

If the estimate q̂ is near the true value q, then the product of the the estimate and

the inverse of the true value will be near identity, and the 2-norm of the difference

provides a comparison metric.
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The angular velocity error will simply be the 2-norm of the vector difference

between the estimated angular velocity from the filter and the true angular velocity

from the truth simulation. The error in the MOI will be taken as the norm of the

difference between the diagonal elements of the adaptive MOI estimate matrix and

the true MOI matrix.

A metric specifically used for Scenario 3 will be the percentage of time a particular

adaptive estimation scheme is classifying the correct operational mode. Given a set of

likelihoods at a time step, the bank model with the maximum likelihood will be taken

as the estimated operational mode. The percentage of correct mode identifications

using the maximum likelihood model will then be taken as a metric for comparison.

3.4 Results and Discussion

The following section details the results and provides a discussion resulting the

previously described three scenarios. Each section will first reintroduce the scenario

verbally, and then numerically describe the specific parameters of each scenario. The

various filter hypotheses in each bank are described. A brief overview of the specific

numerical methodology for each experiment is described. Results and discussion are

then presented for each scenario.

3.4.1 Results from Scenario 1: Principal MOI Estimation.

Scenario 1 examines the identification of the correct principal MOI in a bank

of possible, realistic values. The application of this scenario alludes to a bank of

possible operational modes or configurations, each with their respective MOI that

is known to the user. Using streaming attitude data, the intent is to identify

the correct MOI ratio using MMAE. In this context, for torque-free rigid body

motion, only the relative MOI ratio can be estimated as discussed later in Chapter 5.

Scenario 1 does not use the time-varying MOI model develiped in Section 3.3.4, but

rather investigates nominal, physically realizable MOI values. A scenario time of five
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minutes is used with a constant time step ∆t of one second. Four gyro noise levels of

σω = 10−4, 10−3, 10−2, and 10−1 deg/s are examined. The initial spacecraft angular

velocity and quaternion used in this scenario are

ω0 =

[
3 1.5 1

]T
deg/s

q0 =

[
0 0 0 1

]T . (3.50)

Initial estimation errors of 5% are added to both the angular velocity and quaternion

for additional realism in initial estimates. Since the unscented filter is actually

estimating the GRPs for the attitude states, and intermediate conversions are

performed for the quaternions, the attitude covariance is actually describing the

GRPs. The initial GRP covariance Ppp
0 and initial angular velocity covariance Pωω

0

are given as

Ppp
0 = 0.0087 · 13×3

Pωω
0 = 0.0174 · 13×3

. (3.51)

The filter bank assumes five different MOI configurations detailed along with their

respective relative MOI ratios in Table 3.2. The true model is an axisymmetric rigid

body, while the other four models are asymmetric shapes representative of physically

realizable systems. Care has been taken to ensure the MOI values do not violate

the triangle inequality relationship among the principal moments of inertia. From

a theoretical standpoint, this particular axisymmetric body configuration will result

in a constant rotation about the body-1 axis, implying that ω̇1 = 0 which will limit

some of the information available to the estimator.

Figure 3.3 displays the results of a realization of the current scenario under the

four different noise levels. For noise levels below O(10−2), the adaptive estimation

scheme is able to identify, with confidence, the true model in the bank in less than

15 seconds (or 15 time-steps since ∆t is a constant step of one second). Figure 3.4
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Figure 3.3: Probability time series from a realization of Scenario 1 under four different

gyro noise levels.
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Table 3.2: Filter bank for Scenario 1: Principal MOI Estimation.

Filter Assumed MOI in Filter (kg-m2) Associated MOI Ratios

1 I1 = diag
(

[500, 350, 150]T
)

p1 = [0.4000,−1.0000,−1.0000]T

2 I2 = diag
(

[210, 110, 95]T
)

p2 = [0.0750,−0.9545, 0.9474]T

3 I3 = diag
(

[140, 100, 40]T
)

p3 = [0.4286,−1.0000, 1.0000]T

4 I4 = diag
(

[500, 300, 290]T
)

p4 = [0.0200,−0.7000, 0.6897]T

5 (True) I5 = diag
(

[200, 150, 150]T
)

p5 = [0,−0.3333, 0.3333]T

displays the estimation errors in angular velocity, attitude, MOI, and a probability

time series for a realization using a noise level of σω ∼ O(10−2). The adaptive

estimation scheme identifies the correct model again within 15 seconds, the quaternion

error remains on the order of O(10−4) and the angular velocity error is on the order

of the measurement noise. As the correct model is identified, the adaptive weighting

scheme calculates the MOI with a high degree of accuracy.

However, for the noise level where σω ∼ O(10−1), there is competition among

the models. Notably, the MMAE scheme has difficulty in discerning between Model

4, an incorrect model, and Model 5, the true MOI for this scenario. This difficulty in

model identification is attributed to two explanations. The first is that, other than

Model 5, Model 4 is the closest parameter value to the truth, when examining the

relative MOI ratio. Taking the 2-norm of the vector difference of relative MOI ratios,

Model 4 has an error of approximately 0.51, compared to Models 1,2, and 3, whose

errors are, respectively, 1.02, 0.88, and 1.04. The additional, and possibly coupled,

cause of the conflict between Models 4 and 5 is attributed to the noise level in this

scenario. Figure 3.5 displays the true values of ω̇ compared to the four different noise

levels that have been scaled by the time step. According to Figure 3.5, the changes
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Figure 3.4: Adaptive estimation results for Scenario 1 showing the probability time

series and estimation errors in angular velocity, attitude, MOI, for a realization using

a noise level of σω ∼ O(10−2).
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in the dynamics of the system over time are below the noise floor allowed by the gyro

measurements.
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Figure 3.5: Comparison of noise levels to the true ω̇ time history for Scenario 1,

indicating that the changes in system dynamics and parameters that are greater than

noise levels are difficult for the adaptive estimation scheme to detect.

This implies that for the given noise level, the adaptive estimation scheme may

not be able to differentiate between system changes and system noise. From this, a

key result from Scenario 1 is the notion that the adaptive estimation scheme might

only account for system changes above a given threshold, otherwise these changes may

be compensated for in gain calculations that are, in reality, attributable to system

parameter changes. An additional result from Scenario 1’s numerical experiment is

that the MOI can be estimated from a bank of UKFs in a MMAE formulation using

the particular measurement functions, a result that, to the author’s knowledge, has
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not been previously found. This observation implies this is the first contribution to

the field in using banks of UKFs to estimate the MOI using onboard sensors. A final

result from Scenario 1 also examined the impact of relative MOI ratios, and that for

torque free rigid body motion, a body may be, in magnitude, significantly different

in MOI, but if the relative MOI ratios are near, the rotational motion may be similar

and difficult to discern in a filtering scheme.

3.4.2 Results from Scenario 2: Payload Input Command Identifi-

cation.

Scenario 2 examines the identification of a commanded input to a payload.

The application of this scenario alludes to potential known operational modes of

spacecraft, and the utility of streaming attitude data to identify this mode via

adaptive estimation. All other mass and MOI components of the spacecraft are

assumed known, with the exception of the commanded input to the particular

payload. The assumed MOI components can be found in more detail in Appendix

A. Although this experiment is based on on-board sensors, the same principals will

apply to ground-based algorithms using the same measurements, or post processing

using the given measurements. The classical MMAE method as well as ALM will be

applied to this scenario.

A scenario time of five minutes is used with a constant time step of two seconds.

The initial spacecraft angular velocity and quaternion used in this scenario are

ω0 =

[
3 1.5 1

]T
deg/s

q0 =

[
0 0 0 1

]T . (3.52)

Initial estimation errors of 5% are added to both the angular velocity and quaternion

for additional realism in initial estimates. Since the unscented filter is actually

estimating the GRPs for the attitude states, and intermediate conversions are

performed for the quaternions, the attitude covariance is actually describing the
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GRPs. The initial GRP covariance Ppp
0 and initial angular velocity covariance Pωω

0

are given as

Ppp
0 = 0.0087 · 13×3

Pωω
0 = 0.0174 · 13×3 deg2/s2

. (3.53)

The filter bank assumes eight different MOI configurations detailed in Table 3.3.

Four of the eight filters hypothesize that the payload is oriented at a constant angle,

in the frame of the payload. The remaining four filters hypothesize a sinusoidal

input command, similar to a gimbaled sweeping optical payload. The varying degrees

of complexity in the trigonometric hypotheses are designed to test the adaptive

estimator’s ability to distinguish between frequency, amplitude, and function order

among the filters. The time derivatives of the input commands required for the MOI

models are easily calculated from the analytical expressions in Table 3.3. Figure 3.6

provides a time history of the eight different models in the bank.

Table 3.3: Filter bank for Scenario 2: Payload Input Command Identification. Input

commands are given in degrees. Here, ωθ = 2π/tf , where tf is the final simulation

time, to ensure one period is completed during the simulation, and θmax = 20°.

Filter Input Command Filter Input Command

1 θPL,1(t) = 45° 5 θPL,5(t) = θmax

2

(
1 + sin2 (0.1 · ωθt)

)
2 θPL,2(t) = 10° 6 θPL,6(t) = θmax cos (0.4 · ωθt)

3 θPL,3(t) = −45° 7 θPL,7(t) = θmax (1− cos2 (ωθt))

4 θPL,4(t) = 5° 8 (True Model) θPL,8(t) = θmax

2
cos (ωθt)

The results from a realization using MMAE are shown in Figure 3.7. The

estimation scheme is able to identify the correct model after 3.5 minutes. Immediately

following the near-unity likelihood value for Model 8, the MOI estimation error

71



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t(min)

-50

-40

-30

-20

-10

0

10

20

30

40

50

θ
 In

pu
t C

om
m

an
d 

(d
eg

)

θ
1

θ
2

θ
3

θ
4

θ
5

θ
6

θ
7

θ
8

Figure 3.6: Depiction of the eight different input commands used as hypotheses in

Scenario 2. For clarity, the input commands are plotted every five time steps.

approaches zero. The input angle parameter estimate also approaches the true value

after identifying the correct model. The quaternion and angular velocity estimates

have errors that are both O(10−2). There is some conflict between Models 4 and 5,

which differ by 5°, during the initial 3 minutes of the simulation, but the recursiveness

of the MMAE routine allows for the correct selection of Model 8 after 3.5 minutes.

Had a pruning or filter removal mechanism been employed in this realization, Model

8’s likelihood would have been below realistic threshold values and would have been

removed, rather than regaining its maximum likelihood.

The results from the same realization using the ALM algorithm are shown in

Figure 3.8. The ALM method suffers a degraded performance when compared to the

MMAE algorithm. The quaternion and angular velocity estimates are still O(10−2) as

the UKFs are still functioning filters, but the unknown system parameter is not well

identified. The correct model is only the maximum likelihood for nearly a minute,
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Figure 3.7: Results from a realization of Scenario 2 using MMAE with ω0 =

[3, 1.5, 1]T deg/s. Model 8 contains the true dynamics.
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and is outranked by competing models for the remainder of the simulation. This

performance in identifying the correct model using ALM compares well with the

results in [9]. The ALM method tends to equalize the likelihoods of all models

over short propagation windows, but will tend to detect sudden changes over longer

propagation windows. In the current example with propagations on the order of

seconds, these appear to fall within the magnitude of propagation windows that lead

to model equalization. This implies that ALM may not necessarily be the best general

algorithm for attitude estimation, as the filtering fast rotational motions could lend

to missing key dynamics.

For comparison, Scenario 2 is repeated exactly as previously described, but the

initial angular velocity is modified to be ω0 = [3, 3, 3]T deg/s. Figure 3.9 displays

the results using the MMAE algorithm. The immediate result is Model 8’s correct

identification two minutes earlier than the slower initial conditions, which again leads

to a near-zero estimation error of the input angle and MOI. The same simulation data

is fed into an ALM algorithm, the results of which are plotted in Figure 3.10. The

ALM results follow a similar trend from before in that models are equalized and the

ALM method is definitely not optimal for the current situation. However, ALM and

MMAE both identify Model 8 as the most likely model within nearly 1.5 minutes,

but ALM’s reinitialization equalizes the model probabilities after two minutes and the

maximum likelihood model is no longer the true value. The faster initial conditions

along the body 2- and 3-axes provide more variability in the information available to

the adaptive estimator.

3.4.3 Results from Scenario 3: Payload Separation.

Scenario 3 examines the utility of various adaptive estimation schemes in

identifying the correct structural configuration of a spacecraft given a series of three

payload separations. Each payload is measured as a discontinuous loss of mass and
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Figure 3.8: Results from a realization of Scenario 2 using ALM with ω0 =

[3, 1.5, 1]T deg/s. Model 8 contains the true dynamics.
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Figure 3.9: Results from a realization of Scenario 2 with faster initial conditions using

MMAE ω0 = [3, 3, 3]T deg/s. Model 8 contains the true dynamics.
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Figure 3.10: Results from a realization of Scenario 2 with faster initial conditions

using ALM ω0 = [3, 3, 3]T deg/s. Model 8 contains the true dynamics.
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change to MOI. The intent is to examine the different adaptive estimation schemes and

identify which methods are more applicable to sudden changes in system dynamics

and parameters. The filter bank will consist of four different models, all true at some

point during the simulation time. Model 1 is true prior to the first payload separation,

Model 2 is true between the first and second payload separations, Model 3 is true

between the second and third payload separations, and Model 4 is true in the final

configuration. The classical MMAE scheme, ALM, Soken’s method, and the hybrid

likelihood method will be evaluated in this scenario. A scenario time of 32 minutes

is used with a constant time step ∆t of one second. The initial spacecraft angular

velocity and quaternion used in this scenario are

ω0 =

[
2 2 1

]T
deg/s

q0 =

[
√

2/2 0 0
√

2/2

]T . (3.54)

Initial estimation errors of 5% are added to both the angular velocity and quaternion

for additional realism in initial estimates. Since the unscented filter is actually

estimating the GRPs for the attitude states, and intermediate conversions are

performed for the quaternions, the attitude covariance is actually describing the

GRPs. The initial GRP covariance Ppp
0 and initial angular velocity covariance Pωω

0

are given as

Ppp
0 = 0.0087 · 13×3

Pωω
0 = 0.0174 · 13×3 deg2/s2

. (3.55)

The filter bank assumes four different MOI configurations detailed in Table 3.4, and

each model is are true at some point during the simulation. It is assumed that

although the center of mass of the spacecraft will likely physically change following

a separation, the MOI matrices are representative of the pre- and post-separation

structures. The objective of this research was to examine sudden parameter change

detection, and a more extensive effort for center of mass changes is required for
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future research. Appendix B provides the finer details of the spacecraft model used

to calculate the four different MOI configurations.

Table 3.4: Filter bank for Scenario 3: Payload Separation.

Filter Spacecraft MOI (kg-m2) Relative MOI Ratio Time Interval (sec)

1 I1 =


770.5 −100 −200

−100 834.5 −40

−200 −40 589.5




0.3944

−0.6176

0.2951

 [t0, tsep,1) = [0, 8)

2 I2 =


530.5 −100 0

−100 394.5 −40

0 −40 369.5




0.1258

−0.6831

0.6079

 [tsep,1, tsep,2) = [8, 16)

3 I3 =


420 0 0

0 287 −40

0 −40 369.5




0.3474

−0.8930

0.7909

 [tsep,2, tsep,3) = [16, 24)

4 I4 =


420 0 0

0 287 −40

0 −40 165




0.3636

−0.8750

0.7500

 [tsep,3, tf ) = [24, 32)

A comparison of likelihood values from a realization of Scenario 3 are shown in

Figure 3.11. The numbers (1,2,3,4) in each subfigure between sets of vertical lines

indicate that model is true in that time interval. The individual data points indicate

the likelihood of that model at a given time. In the MMAE and Soken charts (Figures

3.11a and 3.11c), the data points show as nearly horizontal lines as the estimators

assign essentially a binary likelihood of 1 or 0 with intermediate transition values.

The MMAE algorithm quickly identifies the correct model during Model 1’s correct

time interval, but is unable to adaptively switch modes until nearly 90% of the way

through Model 2’s correct time interval, after which the MMAE routine incorrectly
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assigns Model 2 with unit probability when Models 3 and 4 are true. The ALM

method does not detect the abrupt system changes, most likely due to the short

propagation time in this scenario. The ALM method continues to essentially equalize

models at each time step, but does assign the maximum likelihood to the correct

model during brief periods. The Soken estimator quickly identifies the correct model,

due to its inherent construction to adapt to sudden changes in the dynamics. The

hybrid estimator performs similarly with quick adaption. There is competition for

both the Soken and hybrid methods in differentiating between Models 3 and 4, which

is attributed to the similarity of the assumed MOI matrices after the second and third

payload separations, where the only change between Model 3 and 4 is a change in the

Izz component of the MOI.

The results from 30 realizations of five different iterations of Scenario 3 are

tabulated in Tables 3.5 through 3.8. The scenario iteration examines the significance

of the moving window length on model identification. It should be noted that the

filter parameters were empirically tuned, as numerical instabilities do arise under

numerous conditions. One common instability resulted from near singular covariance

matrices for which a Cholesky decomposition often fails. The modifications to each

filter parameter are described in the table captions. The evaluation metric is the

percentage of time each adaptive estimation scheme correctly identifies the model,

while the model is active, using the model with the maximum likelihood. The values

for λ1, λ2 are held constant for a control with respect to the low-pass filter portion of

the Soken and hybrid techniques. The values for a, b, and β were empirically tuned

for the current problem and prevent computational issues.

The first iteration of Scenario 3, with results found in Table 3.5, implemented a

moving window length of 100 time steps. The ALM method recognizes the parameter

change less than half the time, while the MMAE scheme typically recognizes the
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Figure 3.11: Comparison of model likelihoods for a realization of Scenario 3. The

modified Soken and hybrid methods outperform MMAE and ALM for sudden change

detection. a = 1, b = 0, λ1 = 0.997, λ2 = 0.95, β = 0.05, µ = 100
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correct model prior to the separations, but is unable to recover and the maximum

MMAE likelihood is rarely the correct mode once payload separations begin. The

Soken and hybrid schemes compare relatively equivalent, with Soken’s outperforming

the hybrid mode in three of the four configurations. Decreasing the moving window

size by 80%, Table 3.6 tabulates the results for µ = 20 time steps. Since µ only

impacts the Soken and hybrid models, the results for the ALM and MMAE methods

produce near similar results. The Soken and hybrid methods compare similarly, with

the hybrid method identifying the correct model slightly (less than 2%) more often

than the Soken scheme. A similar trend is noted for the remaining scenarios.

Table 3.5: Percent correct model identification using a maximum likelihood metric.

Results are from 30 realizations of Scenario 3. a = 1, b = 0, λ1 = 0.997, λ2 = 0.95, β =

0.05, µ = 100

Model ALM MMAE Soken Hybrid

1 37% 99% 98% 99%

2 37% ≈0% 93% 95%

3 41% ≈0% 90% 89%

4 50% ≈0% 91% 89%

The general trend among the various results points to the efficacy of the Soken

and hybrid likelihood methods in terms of detecting sudden parameter changes. The

MMAE scheme appears to often suffer from a lock-out, or inability to recover from

models whose likelihoods have been reduced to essentially zero. The ALM method

is able to eventually adopt to the sudden parameter changes, and on longer time

scales the ALM is likely to increase in accuracy. The Soken and hybrid methods
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Table 3.6: Percent correct model identification using a maximum likelihood metric.

Results are from 30 realizations of Scenario 3. a = 1, b = 0, λ1 = 0.997, λ2 = 0.95, β =

0.05, µ = 20

Model ALM MMAE Soken Hybrid

1 37% 99% 99% 98%

2 39% 1% 92% 94%

3 40% ≈0% 92% 93%

4 50% ≈0% 95% 91%

Table 3.7: Percent correct model identification using a maximum likelihood metric.

Results are from 30 realizations of Scenario 3. a = 1, b = 0, λ1 = 0.997, λ2 = 0.95, β =

0.05, µ = 150

Model ALM MMAE Soken Hybrid

1 39% 98% 98% 98%

2 37% 1% 91% 94%

3 44% 1% 86% 86%

4 49% ≈0% 89% 86%

Table 3.8: Percent correct model identification using a maximum likelihood metric.

Results are from 30 realizations of Scenario 3. a = 1, b = 0, λ1 = 0.997, λ2 = 0.95, β =

0.05, µ = 200

Model ALM MMAE Soken Hybrid

1 34% 97% 99% 99%

2 32% 2% 95% 95%

3 33% ≈0% 94% 92%

4 43% ≈0% 95% 92%
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compare, overall, very similarly, indicating that the weighted state and covariance

filter reinitialization does not introduce significant improvement to the algorithm, but

over long time scales, or in a different set of dynamics, could increase the detection

accuracy.

3.5 Conclusions and Future Work

The purpose of the numerical experiment presented in this chapter was to analyze

the new application of adaptive estimation techniques to the time-varying spacecraft

MOI problem. Three different scenarios were analyzed. The first scenario sought the

identification of a spacecraft’s relative MOI ratios, the driving parameter for torque-

free rigid body motion. The second scenario sought the identification of a continuous

command input for a gimbaling and deployable payload. The third scenario examined

a series of separating payloads, each producing a discontinuity in the spacecraft

MOI. A hybrid between two adaptive estimation schemes was developed that, for

this scenario, exhibits approximately the same performance as the Soken algorithm.

This similar performance is likely a function of the propagation step, as the ALM

hybrid component detects sudden dynamics changes over long propagation windows.

Some key findings from this work resulted in the need for rotational information

about the three axes and the difficulty in estimating when unavailable, and also the

need for variability and diversity in the filter bank. Another key finding was the

change in dynamics must be greater than the noise floor, otherwise it is likely the

estimator will account for the dynamical changes by compensating in noise rejection

calculations. Specific future work pertaining to this numerical experiment will be

detailed in Chapter 6. To the extent of the author’s knowledge, this application

of adaptive estimation to detect MOI changes has not been applied before and the

research is a new contribution to the field. This research allowed for the use of

streaming attitude data to estimate structural changes and has served as an initial
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proof of concept, ultimately laying the foundation for future experimental work

examining spacecraft MOI change detection via adaptive attitude estimation.
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IV. Alternate Numerical Solutions to Wahba’s Problem of Sequential

Frame Attitude Estimation Using Heuristic Optimization and Fast

Quartic Numerical Solvers

Grace Wahba posed the satellite attitude determination problem as a least-

squares optimization problem in 1965 [20]. That is, given N sets of simultaneous

vector measurements in two different reference frames, Wahba’s problem seeks to

approximate the rotation matrix between the two frames that minimizes a particular

cost function. This rotation matrix defines the current attitude estimate. Classical

numerical solutions to Wahba’s problem include Davenport’s q-method [21], TRIAD

[22], QUEST [23], and several other techniques [24]. This research evaluates the

application of Strobach’s Fast Quartic Solver [18] to quickly solve a fourth-order

eigenvalue problem required for the quaternion attitude estimate. Additionally, this

work examines the application of heuristic based techniques, to include particle swarm

optimization (PSO) and genetic algorithms (GA), to solve Wahba’s minimization

problem to estimate spacecraft attitude. As previously mentioned, the reader may

notice some repetition between the presented motivation and background.

4.1 Introduction and Motivation

To define orientation in a three-dimensional space, one needs three independent

parameters. A single vector measurement will provide two independent parameters,

as a unit vector constraint removes a DOF, while two vector measurements will

provide at least four quantities, making the problem overdetermined. As no

general closed form solution exists, the attitude determination problem becomes

an attitude estimation problem, especially in the presence of measurement and

process noise. An attitude solution using single frame estimation techniques is not

possible for an underdetermined single set of measurements. However, when two or
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more observations are available, the attitude determination problem is numerically

solvable, and Wahba’s problem seeks to estimate the current attitude by minimizing

a particular cost function to compute a rotation matrix.

The accuracy from coupling a spacecraft’s attitude within an orbital state

propagator is limited by the accuracy of the attitude estimate. The attitude dynamics

of a rigid (or flexible) body are highly nonlinear, coupled, and sensitive to particular

system parameters such as the spacecraft MOI [7]. Accurate attitude determination

and the tight coupling between the MOI and the rotational motion of the spacecraft

is of concern to SSA operators. Miscalculation of the spacecraft orientation, changes

in MOI, or assumptions of rigidity could directly contributed to the observed effect

of non-gravitational perturbations on an orbit and the consequential error and state

covariance growth.

In the single frame attitude estimation problem made famous by Wahba in [20],

knowledge of the spacecraft MOI is not necessarily required, as the rotation matrix

between two reference frames is computed based upon unit vector measurements.

Some recursive filters have produced hybrid estimation routines where the single

frame problem becomes an intermediate step [101]. Numerous estimation routines

exist to solve the single frame problem, and the solution method often relies on

the parameterization of the rotation matrix, whether by quaternions, Euler angles,

Rodriguez parameters, etc. Section 2.1.3 provides an overview of the various attitude

parameters. Quaternion parameterizations often lead to a quartic eigendecomposition

problem, the characteristic equation of which is solved in some instances analytically

[44], or via numerical techniques like Newton-Raphson in QUEST [23].

Wahba’s attitude estimation problem resembles a least-squares minimization

problem, and has recently been shown to be a total least-squares problem [102],

allowing for ways to more elegantly express covariance structures, which is not
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investigated in this research. The least-squares minimization problem motivates

the application of different optimization techniques to estimate the optimal attitude

solution. One limitation common in many optimization routines is the need for a

suitable initial guess, and when a ‘close’ initial guess is provided, may find themselves

converging in a local optimal solution. Evolutionary or heuristic optimization

algorithms have a key advantage in this regard in that an initial guess is often

randomly generated and are more likely, but not guaranteed, to converge on locally,

if not globally, optimal solutions [76; 79; 82].

This presented research is aimed at decreasing the computation time required to

solve Wahba’s problem by the application of Strobach’s FQS algorithm. Additionally,

this work seeks to demonstrate the application of heuristic techniques to solve

the single frame attitude estimation problem. Section 4.2 provides a literature

review of current attitude estimation techniques. From an application perspective,

operational spacecraft are unlikely to employ the coding environment (Matlab) used

to benchmark in this research; however, similar open-source platforms such as Python

are possibilities. Specifics of the algorithms applied are also discussed in Section

4.2. Section 4.3 details the flow of numerical simulations and the evaluation metrics

used. Section 4.4 details the results from various simulations. Finally, Section 4.5

summarizes the conclusions made in this research.

4.2 Background

The current research in Chapter 4 examines the fields of single-frame attitude

determination and heuristic optimization. Chapter 2 provided an in-depth discussion

of attitude determination in Section 2.3 that is recreated and expanded upon in this

section. For background information regarding heuristic optimization, the reader is

referred to Section 2.6. The discussion reveals a dichotomy in the attitude estimation

problem: on one side are the recursive filtering methods used in Chapter 3, and on
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the other side are the single frame estimation methods discussed in this chapter. The

following section provides a discussion on Wahba’s problem, which is the classical

example of single frame estimation, and also discusses classical solution techniques.

This section provides a discussion on the heuristic optimization schemes and quartic

root solvers used in this research.

4.2.1 Wahba’s Problem and Classical Numerical Solutions.

When two or more vector observations are available, the attitude determination

problem is overdetermined [22]. This formulation lends to computing a rotation

matrix (attitude) to minimize a loss function of these measurements. One loss

function is often defined as Wahba’s problem [20; 22; 24], and is given as

J
(
Rbi
)

=
1

2

N∑
k=1

wk
∣∣∣∣vkb −Rbivki

∣∣∣∣2 (4.1)

where J is the loss function, k is the index for theN observations, wk is the observation

weight, vkb is kth vector of body frame components, vki is the kth vector of components

in the inertial frame, and Rbi is the rotation matrix to be found to minimize J .

There are three commonly referenced solutions to this problem: (1) a numerical

minimization approach using Lagrange multiplers; (2) an exact analytical solution in

the eigenspace known as the q-method; and (3) an eigenspace approximation method

known as QUEST.

In the numerical approximation to minimizing J , Wahba’s problem generally

involves the standard appendage of Lagrange multipliers with the unity norm quater-

nion constraint, a Jacobian, and a Newton-Raphson iteration [22]. Davenport’s q-

method [22] rewrites Wahba’s minimization problem (min J(Rbi)) as a maximization

of a gain function, where quaternions are the independent variables (i.e., max g(q)).

Appending the quaternion norm constraint leads to an eigenvalue problem, where

the eigenvector corresponding to the eigenvalue maximizing the gain function is the

optimal attitude estimate [22].
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Shuster expanded Davenport’s q-method with QUEST by providing an iterative

numerical solution to find the maximum eigenvalue [23]. Rearranging the gain

function derived from Wahba’s problem, an initial guess for the optimal eigenvalue

can be approximated as the sum of the weights wk, and the corresponding eigenvector

can be iteratively determined. Crassidis claims that often only a single iteration is

required for the QUEST solution to converge [24], but when noise is present the

number of iterations can be much greater [44]. While the QUEST algorithm is less

robust than the q-method, QUEST has proven more reliable and computationally

efficient than the q-method [24]. Psiaki modified Shuster’s work with Extended

QUEST [45] to allow for the estimation of other states (e.g., gyro bias) by modifying

the cost function and implementing information filtering algorithms. Although these

methods have minimized a loss function, there is no guarantee that the actual attitude

error is minimized [22].

Wahba’s problem is, at its core, an optimization problem where the control

variable is the rotation matrix, and the cost function is essentially a least-

squares formulation given in Eq. (4.1). Solving directly for the rotation matrix

is a constrained nonlinear optimization problem, where the constraint is matrix

orthonormality (i.e. Rbi ∈ SO(3), the special orthogonal group in three dimensions).

The rotation matrix requires solving for nine design variables that also satisfy the

orthonormality constraint. The classical circumvention of this is to reduce the

dimension of the problem by parameterizing the attitude rotation matrix with the

quaternion. After some algebraic manipulation, the cost function J can be expressed

as

J(Rbi) = λ0 − g(Rbi) = λ0 − tr
[
BTRbi

]
(4.2)
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where

λ0 =
N∑
k=1

wk

B =
N∑
k=1

wkvkbv
T
ki

. (4.3)

and the operator tr [·] is the trace operation, or the sum of diagonal elements of

a matrix. The matrix B is often termed the attitude profile matrix as it contains

the actual data measurements and sensor weights. In order to minimize J , the loss

function g(Rbi) = tr
[
BTRbi

]
should be maximized. Davenport showed that the loss

function could be written in quadratic form as [21; 103]

g(Rbi) = g(q) = qTKq (4.4)

where the matrix K is given as

K =

S− sI3×3 Z

ZT s

 , (4.5)

with the intermediate variables defined as

s = tr [B]

S = B + BT

Z =

[
B23 −B32 B31 −B13 B12 −B21

]
.

(4.6)

The optimization problem takes the form

maximize
q

g(q) = qTKq

subject to qTq = 1

.

Appending the quaternion unit norm constraint to the quadratic qTKq equation

results in

g(q) = qTKq + λ
(
1− qTq

)
. (4.7)
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A first-order optimization on the loss function g is found by taking the partial of

g(q) with respect to both the quaternion vector and the Lagrange multiplier. This

differentiation is then found as

∂qTKq

∂q
= 2KqT − 2λqT = 0

∂qTKq

∂λ
= (1− qTq) = 0

. (4.8)

Solving the first of Eq. (4.8) results in

Kq = λq, (4.9)

which implies the optimal quaternion is the eigenvector associated with the largest

eigenvalue of K matrix. Typically, this is solved by a Newton-Raphson technique

and converges best when the initial guess is taken as the sum of the sensor weights.

When the weights have been normalized such that the sum is one, the initial guess

is unity. Solving the second equation of Eq. (4.8) retrieves the quaternion unit norm

constraint.

The characteristic polynomial of the K matrix has previously been derived using

Cayley-Hamilton in [44; 103] and is presented as

L(x) = x4 + ax3 + bx2 + cx+ d = 0 (4.10)

where x is used to represent the eigenvalues rather than λ, and the coefficients are

given as

a = 0

b = 2(tr[B])2 + tr[adj(S)]

c = −tr[adj(K)]

d = det(K)

. (4.11)

The a coefficient removes the cubic dependency from the characteristic equation,

while the characteristic equation remains highly dependent on the attitude profile
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matrix B as well as the K matrix. The optimal quaternion is then constructed using

the Gibbs vector in an algorithm described in Shuster’s work [23]. The Gibbs vector

becomes infinite near ±π rotations and care must be taken to handle this singularity

[23], such as the method of single frame rotations [23; 104]. The current research

will focus on attitude estimates away from the singularities in these methods as a

means of benchmarking performance, while it is noted that the proposed algorithms

are easily modified to allow for singular scenarios.

4.2.2 Fast Quartic Solver.

The following section will detail the specifics of Strobach’s FQS algorithm used in

this research. Strobach introduced in [18] the Fast Quartic Solver (FQS), a numerical

algorithm to tackle quartic equations efficiently and accurately. Although closed form

quartic solution schemes exists such as Ferrari’s [105], Strobach claims an unsuitability

for stiff quartics with a large root spread [18] due to significant round off errors when

implemented. The method employs the factorization of a quartic into the product

of two quadratics with closed-form solutions. A fixed-point iteration is then used

to fit the quartic-quadratic decomposition. The algorithm essentially iterates on the

decomposed quadratic coefficients to fit the quartic function until a desired tolerance

is reached, or the fitting error is minimized. Given a quartic polynomial of the form

f(x) = x4 + ax3 + bx2 + cx+ d

=
(
x2 + αx+ β

) (
x2 + γx+ δ

)
= (x− x1) (x− x2) (x− x3) (x− x4)

, (4.12)

where (a, b, c, d) are coefficients of the quartic polynomial, (α, β, γ, δ) are coefficients to

the decomposed quadratic polynomials, and (x1, x2, x3, x4) are the roots to the fourth-

order polynomial, a relation can be developed among the coefficients. Expanding the

decomposed quadratics back to a quartic relation, the following equality results among
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the polynomials in quartic form

f(x) =
(
x2 + αx+ β

) (
x2 + γx+ δ

)
= x4 + (α + γ)x3 + (β + αγ + δ)x2 + (βγ + αδ)x+ (βδ)

= x4 + ax3 + bx2 + cx+ d

. (4.13)

Equality must hold among the coefficients in both polynomials, and the resulting

relation can be constructed

1

a

b

c

d


=



1 0 0

α 1 0

β α 1

0 β α

0 0 β




1

γ

δ

 =



1

α + γ

β + αγ + δ

βγ + αδ

βδ


. (4.14)

If the quadratic coefficients do not produce an immediate fit, an error vector e of the

following form results

e =



e1

e2

e3

e4


=



a− (α + γ)

b− (β + αγ + δ)

c− (βγ + αδ)

d− βδ


. (4.15)

The variables (α, β, γ, δ) are the design variables to be iterated on. A Jacobian can

now be found with respect to the design variables

J =



∂e1
∂α

∂e1
∂β

∂e1
∂γ

∂e1
∂δ

∂e2
∂α

∂e2
∂β

∂e2
∂γ

∂e2
∂δ

∂e3
∂α

∂e3
∂β

∂e3
∂γ

∂e3
∂δ

∂e4
∂α

∂e4
∂β

∂e4
∂γ

∂e4
∂δ


=



1 0 1 0

γ 1 α 1

δ γ β α

0 δ 0 β


. (4.16)

A modified Newton-Raphson method is then constructed for a fixed point iteration

on the design variables where the update equation is

pj+1 = pj − J−1ej (4.17)
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where p is the vector of design variables (α, β, γ, δ). The update term J−1ej can be

expressed as an update vector y, and the update equation equivalently given as

pj+1 = pj + y (4.18)

where −Jy = e. This presents a system of linear equations to solve for the update

vector y. The concatenated band structure of the Jacobian is then exploited to solve

the system with LU-factorization of the Jacobian to produce rapid updates to the

design variable vector. Complete details of the algorithm can be found in Strobach’s

work [18] to also include scenarios of repeated and complex roots. For the purposes

of this research, Eq. (4.18) is utilized until the 2-norm of the error vector e is below

a certain tolerance.

4.3 Methodology

The following section will detail the methodology employed in this research in

order to perform attitude estimation on simulated data with the PSO, GA, and FQS

algorithms.

4.3.1 Fast Quartic Solver Methodology.

A series of test cases constructed by Markley are readily available in the literature

[17]. The cases are specifically designed to be representative of various sensor

combinations, number of observations, and noise levels. A Newton-Raphson QUEST

solution, a built-in Matlab eigenvalue calculation representing the q-method, and the

new FQS method will be compared among the various test cases for 10000 simulations

each in a Matlab environment. The full textual description of the test cases are in

Markley’s work [17]. This research will examine eight of the twelve test cases presented

in [17] described in Table 4.1. The measured vectors will be of the form

vb,k = Rbivi,k + nk (4.19)
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where nk is a zero-mean Gaussian vector used to simulate measurement noise whose

covariance is described by the given σ values in Table 4.1. The methodological flow

of numerical simulations used to evaluate the FQS compared to classical estimation

methods initially consists of the construction of noisy vector measurements. Each set

of measurements is then used to develop the K matrix previously described. Classical

numerical attitude estimation methods are applied to the K matrix and compared to

the results of the FQS algorithm using the metrics described in Section 4.3.3. The

maximum root of the characteristic polynomial of K is then taken as the maximum

eigenvalue. For comparison, the optimal quaternion is then determined for the FQS

and QUEST method by using the Gibbs vector. The true rotation matrix for this

numerical experiment is given as

R =


0.352 0.864 0.360

−0.864 0.152 0.480

0.360 −0.480 0.800

 (4.20)

which is associated the quaternion

qT =

[
0.3162 0 0.5692 0.7589

]
. (4.21)

Each measurement will be weighted relatively by its calibrated sensor noise, where

the sensor weight wi is given as

wi =
1

N
(4.22)

whereas the other case will weight the sensors by their known calibrated noise values

as

wi =
1/σi∑N
i=1 1/σi

. (4.23)

96



Table 4.1: Simulated sensor data used in the test cases.

Case Measurements (i Frame) Noise (rad)

1 v1 = [1, 0, 0]
T
,v2 = [0, 1, 0]

T
,v3 = [0, 0, 1]

T
σ1 = σ2 = σ3 = 10−6

2 v1 = [1, 0, 0]
T
,v2 = [0, 1, 0]

T
σ1 = σ2 = 10−6

3 v1 = [1, 0, 0]
T
,v2 = [0, 1, 0]

T
,v3 = [0, 0, 1]

T
σ1 = σ2 = σ3 = 10−2

4 v1 = [1, 0, 0]
T
,v2 = [0, 1, 0]

T
σ1 = σ2 = 10−2

5 v1 = [0.6, 0.8, 0]
T
,v2 = [0.8,−0.6, 0]

T
σ1 = 10−6, σ2 = 10−2

6 v1 = [1, 0, 0]
T
,v2 =

[
1, 10−2, 0

]T
,v3 =

[
1, 0, 10−2

]T
σ1 = σ2 = σ3 = 10−6

7 v1 = [1, 0, 0]
T
,v2 =

[
1, 10−2, 0

]T
σ1 = σ2 = 10−6

8 v1 = [1, 0, 0]
T
,v2 = [0.96, 0.28, 0]

T
,v3 = [0.96, 0, 0.28]

T
σ1 = 10−6, σ2 = σ3 = 10−2

4.3.2 Heuristic Optimization Methodology.

The methodology to assess the performance of the PSO and GA methods to

minimize Wahba’s problem differs slightly than that of Section 4.3.1. Rather than

testing individual cases, a true attitude is given, and N random measurement vectors

are created using Eq. (4.19) using various sensor noise levels. Each sensor producing

any of the N observations will be assumed to have equivalent noise levels. Six

noise levels will be investigated for N observations for the three algorithms with

1000 simulations each. This produces a total of 6 · 3 · (N − 1) · 1000 simulations

for the heuristic optimization experiments. The true attitude used in the heuristic

optimization simulations is

qT =

[
√

2
2

0 0
√

2
2

]
, (4.24)

which corresponds to the rotation matrix

R =


1 0 0

0 0 1

0 −1 0

 . (4.25)
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The default social, cognitive, and inertial parameters in Matlab’s PSO algorithm are

used, as are the default values of the GA method. For this experiment, each sensor

is weighted equally. Rather than constructing the K matrix, Wahba’s least-squares

cost function is then directly minimized using a quaternion parameterization of the

rotation matrix. Only the first three components of the quaternion are used as design

variables, as the fourth is immediately found by using the unit norm constraint. That

is, (q1, q2, q3) are iterated on in the heuristic optimization, and q4 is found by

q4 =
√

1− q2
1 − q2

2 − q2
3 (4.26)

assuming the positive root.

4.3.3 Comparison Metrics.

For comparison metrics, both the FQS and heuristic investigations use execution

time and a principal error angle. Average computation time using Matlab’s tic-

toc command will be one performance metric. As a means of computing tic-toc

resolution, 106 instances of the tic-toc command were executed, generating an average

computation time of 3.3 × 10−7 seconds and a standard deviation of 1.4 × 10−6

seconds. Based on these values, results above a threshold of 10−6 seconds will be

considered within the resolution of tic-toc for the purposes of this research. For

reference, numerical simulations are carried out in Matlab 2015b on a 64-bit Intel

Core i5 at 2.20 GHz with 8.00 GB RAM.

Another performance metric will be the difference in principal angle in the known

attitude and the estimated attitude taken from Forbes [106], given as

φe = cos−1

(
1

2
(tr [Re]− 1)

)
, (4.27)

where the matrix Re is an error matrix calculated as

Re = R̂RT , (4.28)

98



where R is the true rotation matrix and R̂ is the estimated rotation matrix that is

determined from the optimal quaternion estimate. The orthonormality property of

the rotation matrix implies that as the estimated rotation matrix R̂ approaches the

true value, the error rotation matrix will approach the identity matrix. Examining

Eq. (4.28), if Re = 13×3,

φe = cos−1

(
1

2
(tr [13×3]− 1)

)
φe = cos−1 (1)

φe = 0

. (4.29)

As the estimated rotation matrix approaches the true value and the error matrix

approaches identity, the principal angle error approaches zero and provides a scalar

metric to quantify the current problem. The number of iterations and generations

produced during the PSO and GA experiments will be recorded, as well as the final

value of the cost function.

4.4 Results and Discussion

This section will provide results and discussion for the application of FQS and

heuristic optimization to the single frame attitude estimation problem. Section 4.4.1

will detail the results of the FQS application, while Section 4.4.2 will detail the results

of the heuristic optimization techniques.

4.4.1 Numerical Results Using FQS.

The three different estimation algorithms (FQS, QUEST, q-method) are applied

to the eight single frame cases in Table 4.1 for 10,000 runs each. The eight cases

are used to construct the 4 × 4 K matrix given in Eq. (4.5). The three different

schemes are then used to solve the quartic eigen-decomposition problem. The optimal

quaternion is then found as the eigenvector associated with the maximum eigenvalue,

constructed via the Gibbs vector. Rather than examining the individual simulations
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case by case, a more intuitive metric are the average values of solution time and

error angle φe for each case. Assuming each sensor is weighted by noise level as in

Eq. (4.23), Figure 4.1 provides a plot of the average computation time for each case,

and Figure 4.2 displays the average φe error metric. The QUEST algorithm has an

average computation time around 2×10−4 seconds among the eight cases, most likely

due to the set tolerance and fixed iterative process. This consistent computation time

is greater than both q-method and QUEST. The errors are similar among the three

algorithms for each of the eight cases with the exception of Case 2. This is likely

due to the iterative process of the FQS converging within the set tolerance. This is

important to note as the FQS scheme is examining the norm of an error vector of

matching coefficients, while QUEST is examining a residual norm between Newton-

Raphson updates. Although greater than QUEST and q-method in Case 2, the FQS

estimate is still below 10−2 degrees.
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Figure 4.1: Attitude estimation results - average computation time over 105

realizations with sensor noise weighting.
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Figure 4.2: Attitude estimation results - principal angle error metric φe over 105

realizations with sensor noise weighting.

In Tables 4.2 and 4.3, the average solution time and estimation errors are

tabulated for each case, respectively. The results indicate that for all eight test

cases, the FQS algorithm performs between 56% and 72% (with an average of

approximately 67%) faster than the QUEST method in terms of computational speed,

and outperforms the q-method in all but Case 1. The vector measurements in Case 1

provide information about all three axes, are mutually orthogonal, and are associated

with very low noise values. The performance of QUEST and the q-method in this

case are not a surprise based on the well defined geometry of Case 1.

The FQS algorithm regains the computational advantage in the remaining seven

cases, which are not as well geometrically defined and are associated with increased

noise levels and representative off-axis and misaligned sensors. The average error

metric for the eight cases is presented in Table 4.3. As a benchmark comparison, these

error values are compared and found near identical to the results presented in [17; 44].
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Within each case, the average error among the three different methods are nearly

identical to one another. This error similarity is attributed to the same convergence

tolerance used for comparison in each algorithm. This leads to the claim that for

similar estimation error, the FQS method presents an average 67% improvement to

QUEST computation time.

Table 4.2: Comparison of average computation time for the eight different single frame

estimation cases. Percent differences are taken with respect to QUEST solution.

Case Average Solution Time (s)

FQS QUEST q-method

1 9.455e-05 (-56%) 2.139e-04 8.673e-05 (-59%)

2 6.223e-05 (-69%) 2.034e-04 8.002e-05 (-61%)

3 7.751e-05 (-62%) 2.018e-04 7.847e-05 (-61%)

4 5.928e-05 (-70%) 1.967e-04 7.689e-05 (-61%)

5 5.959e-05 (-70%) 1.990e-04 7.629e-05 (-62%)

6 6.087e-05 (-69%) 1.986e-04 7.552e-05 (-62%)

7 5.542e-05 (-72%) 1.959e-04 7.410e-05 (-62%)

8 6.193e-05 (-69%) 1.969e-04 7.443e-05 (-62%)

Although Wahba’s optimization problem led to the notion of constructing the

K matrix and performing an eigendecomposition to minimize J , the value of the

cost function is not evaluated in this section. This is a consequence of each method

using the same K matrix to evaluate, and the similarities of the error angle φe values

indicate the cost values will follow the same trends. The value of the cost function

will be used as a metric when applying the PSO or GA method in Section 4.4.2.
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Table 4.3: Comparison of average error φe for the eight different single frame

estimation cases.

Case Average Error φe (deg)

FQS QUEST q-method

1 6.458e-05 6.458e-05 6.458e-05

2 8.310e-05 3.683e-03 8.310e-05

3 6.464e-01 6.464e-01 6.464e-01

4 8.310e-01 8.310e-01 8.310e-01

5 4.551e-01 4.551e-01 4.551e-01

6 3.940e-03 5.074e-03 3.940e-03

7 6.475e-03 6.475e-03 6.475e-03

8 1.155e00 1.173e00 1.155e00

This section presented the new application of Strobach’s FQS method to solving

the single frame attitude estimation problem. By examining 8 cases of varying

sensor refinement and noise levels, it was found the FQS is able to outperform the

commonly used QUEST algorithm by nearly 67% in terms of computation speed while

maintaining a similar order of accuracy. An additional benefit to using FQS is the

simultaneous solution of all four roots to K’s characteristic equation, and the usage

of the max(·) operation, rather than relying on an initial guess that converges to the

maximum root in QUEST. The FQS method is elegant to code, and its simplicity

and rapid solution time lends credence to real world space applications and attitude

estimation.
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4.4.2 Numerical Results Using PSO and GA.

The PSO and GA methods are applied to single frame vector observations in

order to directly minimize Wahba’s cost function in Eq. (4.1), restated as

J
(
Rbi
)

=
1

2

N∑
k=1

wk
∣∣∣∣vkb −Rbivki

∣∣∣∣2 . (4.30)

The true attitude used in the heuristic optimization simulations is

qT =

[
√

2
2

0 0
√

2
2

]
, (4.31)

which corresponds to the rotation matrix

R =


1 0 0

0 0 1

0 −1 0

 . (4.32)

For a given value of N , N inertial unit vectors are generated at random, and then

rotated to the spacecraft body frame by the given rotation matrix with the addition of

Gaussian noise at various noise levels. The PSO and GA algorithms are then applied

to minimize Wahba’s cost function directly and examined for efficacy.

The PSO results using a swarm of 10 particles are detailed in Figure 4.3. The

average error angle trends approximately an order of magnitude greater than the

calibrated sensor noise, and for noise values below σ = 10−2, are less than 0.1 degrees.

The average cost value is nearly independent of the number of observations, reaching

similar costs that are below the specified tolerance. The average computation time

has a surprisingly near-linear relation with observations. A linear fit to each of the six

noise levels produces an average slope of approximately 0.16 seconds per observation,

and an average y-intercept of 0.47 seconds. This implies an inherent half-second

computation time, and for each additional observation, there is an additional 0.16

seconds for processing. Combined with average iteration values between 48 and 52,
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the PSO algorithm itself likely represents the majority of the computation time, and

the additional time per observation is attributed to the actual observation processing

and cost function evaluation.

The GA results using a population of 10 members are detailed in Figure 4.4. For

larger noise values, the average error is an order of magnitude greater than the same

noise level result using PSO. The average value of the cost function is also greater,

but well within acceptable orders of magnitude. This fact does point out that for

the same data, GA and PSO are minimizing the same cost function with the same

tolerance, and the random noise likely changes the location of the global optima.

With 10 members of the population, the GA does take less time than PSO, but, the

computation time is not as predictable as the previous PSO result.

For a comparison, the number of particles in the swarm were increased from

10 to 100. The results are shown in Figure 4.5. The trends are nearly identical,

empirically, to the previous PSO results. The greater number of particles in the

swarm allows the PSO to capture a slightly more accurate attitude estimate and

lower cost, but the complexity and memory requirements of propagating 100 particles

versus 10 do not necessarily merit the slight increase in accuracy. For an additional

comparison, the population size of the GA was increased from 10 individuals to 100.

The results are shown in Figure 4.6. The inclusion of more members in the population

allows for greater diversity in the intermediate mutation and crossover portions of the

heuristic algorithm. This allows the population to examine a greater search space,

and allows for less sporadic error values and costs. However, the computation time

has essentially doubled, but with an overall decrease in the number of generations

or iterations. The increase in computation time is a direct result of the additional

population members, and the diversity of the population allows for fewer generations

to meet the convergence tolerance.
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Figure 4.3: Results from a direct minimization of Wahba’s cost function using PSO

(10 particles in swarm).

The computation time for both the PSO and GA methods benefits from the

method by which the quaternion is calculated. The search space is limited to

(q1, q2, q3) and the fourth component is found by maintaining a unit norm constraint.

Simulations were performed searching the entire (q1, q2, q3, q4) space where a penalty

factor was introduced to the cost function for unit-norm violations. The computation

time increased by at least an order of magnitude and the unit-norm constraint was
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Figure 4.4: Results from a direct minimization of Wahba’s cost function using GA

(10 population members).

often violated. Additionally, directly minimizing the cost function by iterating on the

quaternion itself avoids the singularity at ±π encountered in classical methods that

solve the eigenvalue problem and then calculate the quaternion through the Gibbs

vector.
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Figure 4.5: Results from a direct minimization of Wahba’s cost function using PSO

(50 particles in swarm).

4.5 Conclusions and Future Work

This research proposed the application of Strobach’s Fast Quartic Solver [18]

to quickly solve the quartic eigenvalue problem required for the quaternion attitude

estimate. The FQS algorithm decomposes the quartic characteristic equation of the

K matrix into the product of two quadratics, and takes advantage of a well-defined

Jacobian to equate polynomial coefficients via LU decomposition. This method
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Figure 4.6: Results from a direct minimization of Wahba’s cost function using GA

(100 population members).

produces an average of 67% improvement to the QUEST computation time, while

using the same convergence criteria produces similar estimation error values. The

decrease in computation time has the potential to reduce time lag between attitude

estimate and control calculation. By solving simultaneously for all four eigenvalues,

the method also avoids the possibility of converging on the non maximum eigenvalue.

The FQS application is prone to the same singularities as QUEST and the q-method,
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but these can be handled similarly by single frame rotations or other singularity

avoidance or removal methods.

Additionally, this work examined the application of heuristic based techniques,

to include particle swarm optimization (PSO) and genetic algorithms (GA), to

solve Wahba’s minimization problem to estimate spacecraft attitude. Both heuristic

methods are capable of minimizing Wahba’s cost function directly, but come with

a significant increase in computation time compared to QUEST, q-method, and

FQS. The algorithms also come with a computation complexity that may not be

posed well for on-board implementation. One of the main benefits to estimating the

quaternion via a heuristic method is a ‘close enough’ initial guess is not required, as

heuristic techniques implement randomly chosen initial candidate solutions. Although

these methods are not well posed for on-board processing, the heuristic algorithms

are applicable to off-line post-processing of vector observation time history. Direct

minimization of the cost function by searching the (q1, q2, q3) maintains the unit norm

constraint and avoids Gibbs vector singularities.

This research has focused on deterministic or geometric attitude determination

based on various numerical solution schemes to the single frame estimation problem.

A key contribution from this work resulted in the application of a rapid quartic root

solver applied to the characteristic equation from Wahba’s problem for a savings

in computational cost. This research also allowed for the contribution of a new

application of heuristic optimization to a total least-squares problem for attitude

determination. Specific future work pertaining to this research will be detailed in

Chapter 6.
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V. Spacecraft Moment of Inertia Estimation Posed as an Ordinary

Differential Equation Parameter Estimation Problem

The equations expressing the attitude dynamics of a rigid or flexible body are

highly nonlinear, coupled, and sensitive to particular system parameters. This brief

introductory section provides an abstract regarding the estimation of these system

parameters. For a given set of initial conditions, the moment of inertia (MOI)

for a spacecraft essentially determines the rotational trajectory. Accurate attitude

determination is of concern to space situational awareness (SSA) operators, as

miscalculation of the spacecraft’s orientation directly influences the impact of modeled

perturbations and can lead to poor translational state estimates. Moreover, current

efforts into orbital debris removal necessitates the estimation of mass properties,

which, through the methods developed in this research can be estimated by observing

the body’s angular velocity via some type of optical sensor. The classical rigid body

motion problem is defined by determining the rotational trajectory and attitude of

a body given its MOI and initial conditions. This research investigates the inverse

problem of MOI estimation given mseasurements of the rotational trajectory and

initial conditions which is solved in two manners. The first approach formulates the

problem as a parameter estimation in a nonlinear ordinary differential equation under

the presence of stochastic measurement noise. Relative MOI ratios are estimated

with single-shooting methods employing Levenberg-Marquardt iteration schemes are

employed. The second approach, in a new fashion, employs a cost function exploiting

the classical polhodes of analytical mechanics and known constants of the motion,

within a two-step optimization process utilizing heuristic optimization techniques

as warm starts to SQP optimizers. Intermediate normalizations and use of Smelt
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parameters are used to minimize the cost function to estimate actual principal MOI

values rather than relative MOI ratios.

5.1 Introduction and Motivation

Accurate attitude determination is of concern to space situational awareness

(SSA) operators. Miscalculations in the spacecraft’s orientation can directly influence

the impact of modeled perturbations that are functions of spacecraft attitude, such as

atmospheric drag or solar radiation pressure. The accuracy of a position and velocity

state estimate can become a function of how well the attitude of the spacecraft is

estimated, which is directly a function of the MOI of the spacecraft. Further, efforts

to remove tumbling debris require knowledge of the mass properties of the body for

an effective capture.

The classical rigid body motion problem is determining the rotational trajectory

of a body given a configuration (the MOI) and initial conditions. The classical

rotational equations of motion are herein refered to as Euler’s equations of rigid

body motion, or simply Euler’s equations. Euler’s equations are nonlinear ordinary

differential equations (ODEs) that are highly coupled among the states, and only

have closed-form solutions for very particular scenarios, such as an isoinertial or

axisymmetric body. Estimation of the MOI is a sensitive process, and on-orbit

estimation techniques have been shown previously in [46; 66–68; 107; 108].

The intent of this research is to estimate a body’s MOI by the measurement of

angular rate data, whether by on-board gyro sensors, or by stand-off estimation of

another body, as in the case of a tumbling satellite. More specifically, for torque-

free motion, this research shows that the relative MOI ratios along each axis can be

estimated. For torque-free motion with given initial conditions, these relative MOI

ratios are shown to be the sole determinant of the rotational trajectory. However,

an ambiguity exists when the absolute MOI about a specific axis is sought from a
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solution solving the linear system formed by the relative MOI ratios as a consequence

of being within the null space of a particular matrix.

One inherent problem in measuring the angular rates of a spacecraft or rigid

body is measurement noise. To start, an initial assumption is made that the sensor

has been calibrated and the measurement noise statistics are known. Further, we

assume the measured angular rates are of the spacecraft body with respect to an

inertial reference frame, allowing the employment of Euler’s equations as classically

derived.

Given the previous discussion, this research question then essentially seeks

solution to the inverse problem of the classic Euler’s equations. That is, given

measurements of the rotational trajectory and initial conditions, can one determine

the moment of inertia? The current problem is posed as one of parameter estimation

in a nonlinear ordinary differential equation under the presence of stochastic

measurement noise. Single-shooting methods employing Levenberg-Marquardt

iteration schemes are employed along with maximum likelihood estimates (MLE)

techniques. An additional intent of this research is to use heuristic optimization

schemes as a warm start initial guess to an SQP optimization method. The

heuristic PSO algorithm is also used to minimize a novel cost function constraining

the rotational trajectory along the intersection of angular momentum and kinetic

energy ellipsoids. Various structural configurations and rotational trajectories are

investigated to assess the performance of the established estimation algorithms.

5.2 Background

The current research on MOI estimation examines the fields of spacecraft attitude

dynamics, Smelt parameters, polhodes, parameter estimation, shooting techniques,

MOI estimation, and heuristic optimization. For background information, the reader

is referred to Section 2.1 regarding attitude dynamics, Section 2.5 for MOI estimation,
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and Section 2.6 for heuristic optimization. The following sections provide background

on Smelt parameters, polhodes, parameter estimation, and shooting techniques.

5.2.1 Relative MOI Ratios or Smelt Parameters.

Euler’s rotation equations of motion in the principal frame are

ω̇1 =

(
B − C
A

)
ω2ω3

ω̇2 =

(
C − A
B

)
ω3ω1

ω̇3 =

(
A−B
C

)
ω1ω2

. (5.1)

The coefficients in Eq. (5.1), along with initial conditions on angular velocity,

determine the rotational trajectory of a rigid body. For example, an unperturbed

axisymmetric body will rotate about one axis at a constant angular velocity, and

rotate about the other two axes with a constant frequency. These coefficients will

remain constant for a rigid body, such that the coefficients can be labeled as the

following

k =

[
k1 k2 k3

]T
=

[
I2−I3
I1

I3−I1
I2

I1−I2
I3

]T
(5.2)

and Euler’s equations in principal form can be expressed as

ω̇1 = k1ω2ω3

ω̇2 = k2ω3ω1

ω̇3 = k3ω1ω2

. (5.3)

The values (k1, k2, k3) are relative MOI ratios among the three axes, and are also

refered to as Smelt parameters [22]. The values for (k1, k2, k3) are constrained within

[−1, 1], and indicate the level of symmetry. Values near 0 or close in magnitude to

1 indicate symmetry between two axes, while intermediate values indicate levels of

asymmetry. The Smelt parameters are not necessarily independent of one another;

rather, they are constrained by the relation [109]

k1 + k2 + k3 + k1k2k3 = 0, (5.4)
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and given two of the three parameters, the other is immediately known. For example,

given k1 and k3, k2 can be found as

k2 = − k1 + k3

1 + k1k3

. (5.5)

The constraint in Eq. (5.4) follows a petal-shape in the (k1, k2, k3) space [109], seen

in Figure 5.1. By observing Eqs.(5.2) and (5.3), given a spacecraft whose MOI I1 is
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Figure 5.1: Petal shape formed by the Smelt parameter (k1, k2, k3) plane.

I1 =


I1 0 0

0 I2 0

0 0 I3

 , (5.6)

and another spacecraft whose MOI is I2 is

I2 = βI1 (5.7)
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where β is some constant, the relative MOI ratios will be identical and the rotational

trajectory will be equal for the same initial conditions in a torque-free environment.

This can be observed by calculating the Smelt parameters for each MOI as

k1 =

[
I2−I3
I1

I3−I1
I2

I1−I2
I3

]T
k2 =

[
β
β
I2−I3
I1

β
β
I3−I1
I2

β
β
I1−I2
I3

]T
= k1

(5.8)

Given a set of relative MOI ratios or Smelt parameters, a linear system of

equations can be formed to solve for the absolute MOI values, shown by rearranging

Eq. (5.2) as

I1k1 − I2 + I3 = 0

I2k2 − I3 + I1 = 0

I3k3 − I1 + I2 = 0

. (5.9)

Equation (5.9) can now be placed into the form Rx = 0 as
k1 −1 1

1 k2 −1

−1 1 k3



I1

I2

I3

 =


0

0

0

 . (5.10)

Since the matrix in the system of Eq. (5.10) linearly transforms the principal MOI to

the zero vector, the principal MOI essentially lies along the basis of the null space of

the relative MOI matrix, N (R). The null space of the matrix in Eq. (5.10) is found

as

p =


I1

I2

I3

 = β


1+k3
1−k1

1+k1k3
1−k1

1

 , (5.11)

where k2 has been expressed as a function of k1 and k3 and β is a scaling constant.

By observation, this β parameter is essentially the minor MOI. Multiplication of the

principal MOI by the constant β will also remain inN (R). The implication of this null
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space finding to the current estimation problem is that once a k has been determined,

there will be an ambiguity where the absolute MOI lies along the null space basis.

A possible mechanism to avoid this problem is then to incorporate torques in the

system model (such that M 6= 0) and exploit the coupling; however, the MOI ratios

and the angular velocity initial conditions are no longer the sole determination of the

rotational trajectory. This research demonstrates the constant β can be determined by

exploiting the angular momentum and kinetic energy ellipsoids, which are discussed

in the next section.

5.2.2 Poinsot’s Ellipsoids for Torque Free Rigid Body Motion.

For torque-free rigid body motion, angular momentum in the inertial frame is

a conserved quantity. Component-wise, this does not hold true in the body frame.

However, as there is a simple rotation between the inertial and body frame, the

magnitude of the angular momentum vector will be equal in both frames. The angular

momentum H is expressed as the product of the MOI and the angular velocity as

H = Iω. (5.12)

Assuming the body frame is aligned with the principal axes such that the MOI matrix

is diagonalizable, the above expression in matrix-vector form is
H1

H2

H3

 =


I1 0 0

0 I2 0

0 0 I3



ω1

ω2

ω3

 . (5.13)

Component wise, the angular momentum is then expressed as
H1

H2

H3

 =


I1ω1

I2ω2

I3ω3

 . (5.14)
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Taking the norm of the above equation, the magnitude of the angular momentum

vector is given as

||H||2 = H2 = I2
1ω

2
1 + I2

2ω
2
2 + I2

3ω
2
3. (5.15)

Normalizing the above equation by H2, a general form of an ellipsoid appears as

1 =
ω2

1

H2/I2
1

+
ω2

2

H2/I2
2

+
ω2

3

H2/I2
3

. (5.16)

An analogous development occurs for the kinetic energy ellipsoid. In the absence

of energy dissipation external torques, the rotational kinetic energy T will remain

constant. The kinetic energy is determined as the dot product of the angular

momentum and angular velocity, expressed as

2T = Iω · ω. (5.17)

Expanding the kinetic energy component wise,

2T = I1ω
2
1 + I2ω

2
2 + I3ω

2
3, (5.18)

and dividing through by 2T , the kinetic energy ellipsoid takes the form

1 =
ω2

1

2T/I1

+
ω2

2

2T/I2

+
ω2

3

2T/I3

. (5.19)

The angular velocity must lie on the surface of both of the ellipsoids, and the

intersection of the angular momentum and kinetic energy ellipsoid is then the

rotational trajectory of the rigid body assuming torque-free motion. Classical results

and relations regarding this can be found in Hughes [7]. This intersection is often

termed a polhode. Figure 5.2 provides an example of the intersection of the two

ellipsoids and the path traced by the angular velocity. Section 5.3.2 will recast these

polhodes in terms of the Smelt parameters as a means to estimate the MOI.
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Figure 5.2: Polhode example - Intersection of angular momentum ellipsoid (H =

4.712 N · m · s) and kinetic energy ellipsoid (T = 0.2315 N · m) for rigid body with

principal MOI given as I1 = 50 kg-m2, I2 = 40 kg-m2, I3 = 20 kg-m2.
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5.2.3 Parameter Estimation in Ordinary Differential Equations.

Ordinary differential equations can be used to model and predict the evolution

of a system based on a given set of initial or boundary conditions. System dynamics

are typically functions of key system parameters, such as the current problem of MOI

coupling in rotational motion. Often these parameters are physically measurable or

observable as an additional state, but may require a more complex estimation process.

This section will briefly detail some of the open literature regarding parameter

estimation in ODEs.

Dogruer discretized the dynamics of a robot odometer in [110] and implemented

a MMAE composed of EKFs to estimate physical robot parameters. Parameter

estimation can also be performed using recursive filtering. In [39], Vandyke et al.

implemented a dual UKF in order to solve for a spacecraft’s MOI. Vandyke estimated

the full MOI matrix to include the products of inertia, producing an additional six

states to estimate.

West and Swiler approximate various physical systems by fitting the data

with multiple Gaussian processess, and use a maximum likelihood estimator to fit

parameters in the Gaussian processes [111]. David and Bastin also implement a

maximum likelihood parameter estimator to determine flow correction properties for

a two-tank water system [112]. Donnet and Samson proposed a parameter estimation

algorithm using expectation-maximization to describe biological processes [113].

Hamilton implements single- and multiple-shooting methods to estimate system

parameters in nonlinear ODEs [114]. Hamilton also compares Gauss-Newton and

Levenberg-Marquardt numerical iterations within the single-shooting, and finds

Levenberg-Marquardt tends to converge more often in nonlinear chaotic systems

[114]. Shawash also used the Levengerg-Marquardt method for real-time parameter

estimation on field programmable gate arrays [115]. Ramsay et al. modified data
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smoothing methods to estimate parameters within chemical processes and auto

immune disease modeling [116].

5.2.4 Numerical Shooting and Iterative Techniques.

Numerical shooting techniques emanate from the idea of selecting a design

variable node and propagating, or shooting, the trajectory forward, and minimizing

the residuals between a given and generated trajectory. Figure 5.3 provides a

visualization of the single shooting process.

Air University: The Intellectual and Leadership Center of the Air Force
Aim High…Fly - Fight - Win

The AFIT of Today is the Air Force of Tomorrow.

3

Figure 5.3: Example of a single-shooting algorithm where some design variable is

iterated on to minimize the residuals ri at time ti between the trajectory y and the

generated trajectory (dashed-line).
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At a top level, the method requires a trajectory, a governing system, either known

or unknown initial conditions, and the selection of design variables. Based on the given

conditions, the change in the system dynamics with respect to the design variables

must then be developed, typically through a Jacobian. A convergence tolerance, a

type of residual metric, and further, a type of iteration scheme must be chosen. A

standard Gauss-Newton scheme is typically represented as

pj+1 = pj −A−1r, (5.20)

where p is a design vector, A is a Jacobian, and r is a residual. The standard Gauss-

Newton in Eq. (5.20) assumes the Jacobian is square. For non-square examples, a

pseudo-inverse is typically given in the form

pj+1 = pj −
(
ATA

)−1
AT r. (5.21)

Equation (5.21) simplifies to Eq. (5.20) when a square assumption is made. However,

for systems that are ill-conditioned, nonlinear, or very large A matrices, the pseudo-

inverse calculations perform poorly. One potential method to circumvent the ill-

conditioning is to use the Lavenberg-Marquardt method [114], given as

pj+1 = pj −
(
ATA + λ · diag

(
ATA

))−1
AT r (5.22)

where λ is an adaptable damping parameter, and the diag(·) operator indicates the

formation of a diagonal matrix of the diagonals of the matrix product ATA.

5.3 Methodology

This section will provide an overview of the methodology and algorithms used to

estimate the relative MOI ratios or the actual principal MOI values from measured

angular velocity data. Section 5.3.1 will describe the numerical shooting methodology,

while Section 5.3.2 will overview the heuristic polhode optimization method.

122



5.3.1 Numerical Single Shooting Solutions.

A time-series of angular velocity data will be generated using Euler’s equations.

Next, zero-mean Gaussian white noise at a given σ noise level will be added to the

angular velocity data to simulate measurements. Having measured data, a numerical

single shooting will be employed using the relative MOI ratio as a design variable.

This experiment will then specifically focus on estimating the principal MOI values.

A Jacobian must be constructed mapping changes in system dynamics to the relative

MOI ratios. The Jacobian for the torque-free rigid body system, JM=0, is given as

JM=0 =
∂f

∂p
=


∂f1
p1

∂f1
p2

∂f1
p3

∂f2
p1

∂f2
p2

∂f2
p3

∂f3
p1

∂f3
p2

∂f3
p3



=


∂ω̇1

p1

∂ω̇1

p2

∂ω̇1

p3

∂ω̇2

p1

∂ω̇2

p2

∂ω̇2

p3

∂ω̇3

p1

∂ω̇3

p2

∂ω̇3

p3


. (5.23)

Reexamining Euler’s equations, if the parameter vector of interest is the relative

MOI ratio, the Jacobian for torque-free rigid body motion is then

JM=0 =


∂ω̇1

k1

∂ω̇1

k2

∂ω̇1

k3

∂ω̇2

k1

∂ω̇2

k2

∂ω̇2

k3

∂ω̇3

k1

∂ω̇3

k2

∂ω̇3

k3

 =


ω2ω3 0 0

0 ω1ω3 0

0 0 ω1ω2

 , (5.24)

which is a much simpler, elegant form with a computationally less expensive inverse.

The A matrix will now be formed from the Jacobian evaluated at each time

step. Let the time interval be divided into N time-steps ranging from t0 to tn. The
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A matrix used in the shooting scheme is then constructed by

A =



JM=0(t0)

JM=0(t1)

...

JM=0(tN)


, (5.25)

and forms a (3N × 3) matrix. The non-square nature of the A matrix merits the use

of the Lavenberg-Marquardt method to numerically iterate on the p design vector.

An initial guess will be randomly generated for the p vector on the interval

[−1, 1]3. The trajectory will be propagated to form the time series ωp, and the

Jacobian evaluated at each time step and the A matrix formed. The residual vector

will then be calculated as

r =



ω̃(t0)− ωp(t0)

ω̃(t1)− ωp(t1)

...

ω̃(tN)− ωp(tN)


, (5.26)

where ω̃ is the measured angular velocity, given by

ω̃ = ω + ηω, (5.27)

where ηω is a 3 × 1 vector of zero-mean Gaussian noise with variance σ2. If the

2-norm of the residual vector is below a set tolerance, the design vector becomes the

relative MOI estimate. If the residual is greater than the tolerance, the design vector

is updated using the LM relation

pj+1 = pj −
(
ATA + λ · diag

(
ATA

))−1
AT r. (5.28)

For each experiment, 100 simulations will be conducted and an average error reported

for various noise levels. The error metric will be taken as

ep = ||p̃− p|| . (5.29)
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In an attempt to estimate the actual principal MOI values, the inclusion of

external moments is examined. The same procedure as previously described is

implemented, with three exceptions. The first is the dynamics are propagated

assuming M 6= 0 in Euler’s rotational EOMs. The second exception is the Jacobian

for the rigid body system JM must be recalculated. Restating the EOMs for rigid

body motion as

ω̇1 =
M1

I1

+
I2 − I3

I1

ω2ω3

ω̇2 =
M2

I2

+
I3 − I1

I2

ω3ω1

ω̇3 =
M3

I3

+
I1 − I2

I3

ω1ω2

. (5.30)

The Jacobian is then taken as the partial with respect to the principal MOI values.

JM =
∂f

∂p
=


∂f1
I1

∂f1
I2

∂f1
I3

∂f2
I1

∂f2
I2

∂f2
I3

∂f3
I1

∂f3
I2

∂f3
I3



=


∂ω̇1

I1

∂ω̇1

I2

∂ω̇1

I3

∂ω̇2

I1

∂ω̇2

I2

∂ω̇2

I3

∂ω̇3

I1

∂ω̇3

I2

∂ω̇3

I3


. (5.31)

Taking the partials in Eq. (5.32) for the included torque system, the Jacobian is

explicitly found as

JM =


I3−I2
I21

ω2ω3 − M1

I21

1
I1
ω2ω3 − 1

I1
ω2ω3

− 1
I2
ω1ω3

I1−I3
I22

ω1ω3 − M2

I22

1
I2
ω1ω3

1
I3
ω1ω2 − 1

I3
ω1ω2

I2−I1
I23

ω2ω1 − M3

I23

 . (5.32)

The third exception is the initial guess must be closer to the basin of attraction of

the solver. This is a limiting factor as the search space will significantly increase to

account for a range of MOI, but the second-order dependency on the principal MOI in

the moment terms introduces additional coupling and sensitivity. The methodology
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for estimating relative MOI ratios by single shooting is summarized in Algorithm 3.

Algorithm 3: Relative MOI Estimation by Single Shooting and LM Iteration
Given a time history of measured angular rate data ω(t) and convergence tolerance ε

1 Define a LM factor λ and adaption rate τ

2 Randomly generate an initial guess p0 in the cube [−1, 1]3

3 While ||r|| > ε

Increase iteration step

Assign guess variable as previous update pj = pj−1

Numerically propagate equations of motion ω̇ using pj

Construct residual vector rj using Eq. (5.26)

If rj < rj−1, then λ = λ/τ ; elseif rj > rj−1, then λ = λ · τ

Construct the 3 ·N × 3 matrix A from Eq. (5.25), update pj using Eq. (5.28)

4 Define the relative MOI estimate p̃ as the updated guess value pj

5.3.2 Polhode Exploitation.

This method seeks to exploit classical constants of the motion of Euler’s equations

and to take advantage of the shape of the polhode discussed in Section 5.2.2, while

also using the Smelt parameters to limit an optimization search space. First, for

torque-free rigid body motion, it is known that angular momentum and rotational

kinetic energy are constants of the motion. The two constants are functions of the

angular velocity and the body’s MOI. Second, it has been established that a body’s

principal MOI can be expressed in terms of the Smelt parameters, but there will be

an arbitrary constant as the principal MOI lies along the basis of a null space. The

angular momentum can be recast in terms of the Smelt parameters as

H2 = I2
1ω

2
1 + I2

2ω
2
2 + I2

3ω
2
3 =

(
β

1 + k3

1− k1

)2

ω2
1 +

(
β

1 + k3k1

1− k1

)2

ω2
2 + β2ω2

3. (5.33)
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Remembering that the constant β scales the null space of the relative MOI matrix,

certain manipulations can be made to essentially normalize the design variables.

Dividing Eq. (5.33) through by β2, and defining the quantity η as

η ≡ H2

β2
, (5.34)

the angular momentum relation can be recast as the following

η = c2
1ω

2
1 + c2

2ω
2
2 + c2

3ω
2
3, (5.35)

where the coefficients are defined as

c1 ≡
1 + k3

1− k1

c2 ≡
1 + k3k1

1− k1

c3 ≡ 1.

(5.36)

A similar manipulation can be performed on the rotational kinetic energy relationship.

Defining τ as

τ ≡ 2T

β
, (5.37)

the new expression for rotational kinetic energy is given as

τ = c1ω
2
1 + c2ω

2
2 + c3ω

2
3. (5.38)

Since angular momentum and kinetic energy are constants of the motion, their time

derivatives must be zero. As the left hand side of Eqs. (5.35) and (5.38) have only

been manipulated by constants, their time derivatives must be zero as well. This

produces the following two constraints

0 = c2
1ω1ω̇1 + c2

2ω2ω̇2 + c2
3ω3ω̇3

0 = c1ω1ω̇1 + c2ω2ω̇2 + c3ω3ω̇3

, (5.39)

where the expressions for ω̇1, ω̇2, and ω̇3 are given by Eq. (5.1) or Eq. (5.3).
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Having recast the angular momentum and kinetic energy ellipsoids in terms of the

Smelt parameters and a scaling constant β, these expressions can now be exploited in

a two-step optimization scheme. The first optimization problem is to minimize a cost

function forcing the fit of the ω̃ data to an angular momentum ellipsoid, a kinetic

energy ellipsoid, while also minimizing the time derivatives of angular momentum

and kinetic energy. The ellipsoids will be used in Smelt parameter form to shrink

the design variable search space. Mathematically, the first optimization problem is

expressed as

minimize
u1

J1 =
N∑
i=1

(
J2
H(ti) + J2

T (ti) + J2
Ḣ

(ti) + J2
Ṫ

(ti)
)

,

where the individual costs are given by

JH(ti) =
∣∣∣∣η − [c2

1ω
2
1(ti) + c2

2ω
2
2(ti) + c2

3ω
2
3(ti)

]∣∣∣∣
JT (ti) =

∣∣∣∣τ − [c1ω
2
1(ti) + c2ω

2
2(ti) + c3ω

2
3(ti)

]∣∣∣∣
JḢ(ti) = c2

1ω1(ti)ω̇1(ti) + c2
2ω2(ti)ω̇2(ti) + c2

3ω3(ti)ω̇3(ti)

JṪ (ti) = c1ω1(ti)ω̇1(ti) + c2ω2(ti)ω̇2(ti) + c3ω3(ti)ω̇3(ti).

(5.40)

The control vector u1 is given by

u1 =

[
k1 k3 η τ

]T
. (5.41)

The Smelt parameters k1 and k3 are limited between [−1, 1], and the third parameter

k2 is derived from the other two values. As given in Eq.(5.34) and Eq.(5.37),

respectively, the normalized angular momentum η and kinetic energy τ are positive

values, whose lower and upper bound magnitudes can be approximated by the

measured angular velocity data. The coefficients (c1, c2, c3) have previously been

defined, but represent a point along the basis of the null space of the relative MOI
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matrix, given as

c1 =
1 + k3

1− k1

c2 =
1 + k3k1

1− k1

c3 = 1

. (5.42)

Assuming the first optimization is successful, the second optimization problem

is to minimize a cost function again forcing the fit of the kinetic energy and angular

momentum ellipsoids, but this time as functions of the principal MOI, expressed in

terms of the optimal Smelt parameters. The second optimization problem also seeks

to size the two ellipsoids by solving for the angular momentum H and kinetic energy

T from the normalized values η and τ . Mathematically, the second optimization

problem is expressed as

minimize
u2

J2 =
N∑
i=1

(
J2
H2

(ti) + J2
T2

(ti) + J2
η (ti) + J2

τ (ti)
)

,

where the individual costs are given by

JH2(ti) =

∣∣∣∣∣∣∣∣1− 1

H2

(
β2c2

1ω
2
1(ti) + β2c2

2ω
2
2(ti) + β2c2

3ω
2
3(ti)

)∣∣∣∣∣∣∣∣
JT2(ti) =

∣∣∣∣∣∣∣∣1− 1

2T

(
βc1ω

2
1(ti) + βc2ω

2
2(ti) + βc3ω

2
3(ti)

)∣∣∣∣∣∣∣∣
Jη(ti) =

∣∣∣∣∣∣∣∣η − H2

β2

∣∣∣∣∣∣∣∣
Jτ (ti) =

∣∣∣∣∣∣∣∣τ − 2T

β

∣∣∣∣∣∣∣∣
. (5.43)

and the control vector u2 is given as

u2 =

[
H T β

]T
. (5.44)

The first optimization problem is initially solved by a heuristic particle swarm

optimizer. The, possibly local or global, optima from the PSO is then used as an

initial guess to an SQP optimization via Matlab’s fmincon. The result of the SQP
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is assumed as the optimal value for k∗1, k
∗
3, η
∗, and τ ∗. These values are then fed to

to second optimization problem along with the angular velocity measurements. The

process is repeated to develop a local minima via PSO as a warm start to SQP for

optimal values of H∗, T ∗, and β∗. These optimal values are then used to construct

the principal MOI values by the Smelt parameter relations. These relations, described

earlier, are given as

I∗1 = β

(
1 + k∗3
1− k∗1

)
I∗2 = β

(
1 + k∗3k

∗
1

1− k∗1

)
I∗3 = β

. (5.45)

A graphical depiction of the two-step optimization is shown in Figure 5.4, and is also

discussed in Algorithm 4.

 𝒚 =  𝝎 PSO 1
develop warm start 

to SQP 1

SQP 1
find 𝒖𝟏

∗ to min 𝑱𝟏

PSO 2
Use 𝒖𝟏

∗ to develop 
warm start to SQP 2

SQP 2
find 𝒖𝟐

∗ to min 𝑱𝟐

𝒖𝟏,𝑷𝑺𝑶 = 𝑘1
′ , 𝑘3

′ , 𝜂′, 𝜏′

𝒖𝟏
∗ = 𝑘1

∗, 𝑘3
∗ , 𝜂∗, 𝜏∗

𝒖𝟐,𝑷𝑺𝑶 = 𝐻′, 𝑇′, 𝛽′

𝒖𝟐
∗ = 𝐻∗, 𝑇∗, 𝛽∗

Smelt Parameter 
Relations

I= 𝐼1
∗, 𝐼2

∗, 𝐼3
∗

Figure 5.4: A graphical depiction of the two-step optimization process using PSO and

SQP to estimate the principal MOI of a spacecraft given angular velocity data.
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Algorithm 4: Heuristic Polhode Exploitation for MOI Estimation
Given a time history of measured angular rate data ω(t)

1 Establish lower and upper bounds for design variables in u1

2 Minimize J1 via a PSO for a local optimal u′1

3 Use u′1 as a warm start to a SQP to minimize J1 for u∗1 = [k∗1 , k
∗
3 , η
∗, τ∗]

4 Establish lower and upper bounds for design variables in u2

5 With the optimal u∗1 as inputs, minimize J2 with a heuristic PSO for a local optimal u′2

6 Use u′2 as a warm start to a SQP to minimize J2 for u∗2 = [H∗, T ∗, β∗]

7 With β∗, solve for optimal principal MOI estimate by Smelt parameter relations

The first optimization has a four-variable search space with values that are

either constrained, or magnitudes that can be approximated by measured data. The

second optimization has a three-variable search space whose values may take on more

variability, but the PSO method typically finds a local minima that serves as an

efficient first guess for the SQP solver. An initial one-step optimization method was

attempted, but attempts consistently used circular logic to define values. This two-

step process breaks up the process by exploiting the Smelt parameters and polhode

in the first step, and uses those optimal estimates to solve the larger problem of

estimating the principal MOI.

5.4 Results and Discussion

5.4.1 Numerical Results and Discussion for Relative MOI Ratio

Estimation Using Single-Shooting.

This section will provide results and discussion on the employment of single-

shooting algorithms to estimate the relative spacecraft MOI, the driving system

parameter is Euler’s rotational equations. Three cases are presented at two different

noise levels. Case 1 is an axisymmetric body at a slower initial conditions. Case 2

is an axisymmetric body at fast angular velocity. Case 3 is an asymmetric tumbling
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body at a slower angular velocity. Each scenario assumes an observation time of 30

seconds with one second time steps. The angular velocity about each axis is assumed

as an available measurement. A damping coefficient of λ = 10000 is initially used

with an adaption rate of τ = 2. The initial conditions, MOI ratios, and nominal

representative principal MOIs are given in Table 5.1.

Table 5.1: Relative MOI Ratio Single Shooting Test Cases

Scenario ω0 (deg/s) MOI Ratios Nominal MOI (kg-m2)

Case 1 ω0 = [1, 1, 0.5]T p = [0.5,−0.5, 0]T I1 = 50, I2 = 50, I3 = 25

Case 2 ω0 = [4, 2, 1]T p = [0.5,−0.5, 0]T I1 = 50, I2 = 50, I3 = 25

Case 3 ω0 = [1, 1, 0.5]T p = [0.2,−0.7143, 0.6]T I1 = 50, I2 = 35, I3 = 25

A summary of the average iterations and error for each simulation is provided

in Table 5.2. A convergence tolerance of ε = N · σ is used to ensure a tolerance level

is in the vicinity of the noise floor, where N is the number of measurements. For

Table 5.2: Average results from single shooting simulations. 100 simulations with a

convergence tolerance ε = N · σ.

Scenario Estimate Iterations Error

Case 1, σ = 10−6 deg/s p̃ = [0.5001,−0.5001, 0.0000]T 46.7 2.7968e-05

Case 1, σ = 10−4 deg/s p̃ = [0.4996,−0.5001,−0.0001]T 27.8 2.7040e-03

Case 2, σ = 10−6 deg/s p̃ = [0.4999,−0.5000,−0.0000]T 45.3 5.2707e-06

Case 2, σ = 10−4 deg/s p̃ = [0.5002,−0.4999,−0.0000]T 31.5 5.0927e-04

Case 3, σ = 10−6 deg/s p̃ = [0.2000,−0.7143, 0.6000]T 50.3 1.8669e-05

Case 3, σ = 10−4 deg/s p̃ = [0.2001,−0.7132, 0.6007]T 27.6 1.9153e-03
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all three cases, the 10−6 noise level requires between 45 and 50 iterations to reach

the convergence tolerance. Although these measurements are the least corrupted by

noise, the tolerance ε = Nσ requires more adaptation on the λ damping parameter

to meet the required level. The 10−4 noise level measurements require between 27

and 30 iterations to converge, but the noise floor has been raised in this scenario and

requires less λ damping adaption to converge. The difference between the fast and

slow rotations in Cases 1 and 2 are not as significant as expected. Both cases require

the same order of iterations to converge and achieve accuracy on the same relative

order. The more rapid spin in Case 2 does yield relative MOI error estimates on

O(10−6) and O(10−4) compared to Case 1’s error of O(10−5) and O(10−3). The fast

spin produces more variability in the Jacobian, and allows for more information to

update the design vector.

From Case 3, an example of the behavior of the λ damping coefficient is found in

Figure 5.5. Similarly, an example of the value of the residual is found in Figure 5.6.

For the first 10 iterations, updates to the design vector p are gradually decreasing

the residual norm. As the residual is decreasing, the value of λ is also decreasing

at a rate dictated by τ . An overshoot begins after the 10th iteration, and a series

of λ adjustments are made. The adaption resembles chatter in the λ values, but

the residual is gradually decreasing with under- and over-shooting until reaching the

tolerance level.

Figure 5.7 provides an example of the resulting iterations of single-shooting

applied to the relative MOI ratio design vector in Case 2. The iterated trajectory

varies wildly after five iterations. Initial guesses project incorrect linear responses

or incorrect concavity. After 10 iterations, the design vector has converged on a

trajectory that is similar, but the residuals among the three directions are still above

the tolerance. After 15 iterations, the design vector is within the basin of attraction of
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Figure 5.5: Example of the behavior of damping coefficient λ, taken from Case 3.
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Figure 5.6: Example of the behavior of the residual norm, taken from Case 3.
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the numerical scheme, and the remaining sets of 20, 25, and 30 iterations are resulting

from the λ adaption in an attempt to minimize the residual norm below ε = Nσ.

This research has demonstrated success is estimating the relative MOI ratio by

posing the problem as an ODE parameter estimation problem and implementing a

single-shooting numerical iteration scheme. The estimated MOI ratio can be used

to characterize the rotational motion, but in this development, the actual value of

the principal MOI can not be determined without additional knowledge. The next

section will provide a discussion on MOI estimation where the external torques are

known and applied to the system.

5.4.2 Numerical Results and Discussion for Spacecraft MOI Esti-

mation with Known Constant Torques.

This section will provide results and discussion on the employment of single-

shooting algorithms to estimate the principal MOI of a spacecraft using measured

angular velocity, posing the problem as an ODE parameter estimation problem in

Euler’s equations, but accounting for known external torques. This section will use

Algorithm 3, replacing the EOMs with Euler’s equations with external torques, and

using the Jacobian developed in Eq. (5.31). Two MOI configurations will be examined

using four cases of known external torques. A nominal noise level of σ = 10−4 deg/s

will be used for measurement simulation. An initial condition of ω0 = [2, 2, 0.5]T

deg/s will be used for each case as well. The error metric will be taken as

ep = ||p̃− p|| , (5.46)

where p̃ is the 3× 1 vector of estimated principal MOI, and p is the 3× 1 vector of

the true principal MOI. A description of the eight test cases is given in Table 5.3, and

the individual MOI and moment profiles are given in Table 5.4.
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(b) Trajectory comparison - 10 iterations
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(c) Trajectory comparison - 15 iterations
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(d) Trajectory comparison - 20 iterations
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(e) Trajectory comparison - 25 iterations
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(f) Trajectory comparison - 30 iterations

Figure 5.7: Example of single-shooting applied to the relative MOI ratio in Case 2.
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Table 5.3: Principal MOI Single Shooting Test Cases

Scenario Nominal MOI (kg-m2) Moment Profile (N ·m)

Case 1 MOI 1 Moment 1

Case 2 MOI 2 Moment 1

Case 3 MOI 1 Moment 2

Case 4 MOI 2 Moment 2

Case 5 MOI 1 Moment 3

Case 6 MOI 2 Moment 3

Case 7 MOI 1 Moment 4

Case 8 MOI 2 Moment 4

Table 5.4: MOI and Moment Profile

Profile Name Value

MOI 1 I1 = 50, I2 = 50, I3 = 25 kg-m2

MOI 2 I1 = 50, I2 = 40, I3 = 25 kg-m2

Moment 1 M1 = 0.001,M2 = 0,M3 = 0.001 N-m

Moment 2 M1 = 0.001,M2 = 0.001,M3 = 0 N-m

Moment 3 M1 = 0,M2 = 0.001,M3 = 0.001 N-m

Moment 4 M1 = 0.001,M2 = 0.001,M3 = 0.001 N-m

For each test case, a series of 1000 simulations are carried out. Table 5.5 provides

a summary of the numerical experiment results, where the initial guess for each

simulation is a random normally distributed 3×1 vector centered around the principal
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MOI values with a σ of 5 kg-m2. A convergence tolerance of ε = 10−3 ≈ 0.06 deg/s,

or approximately 0.002 deg/s per time step is used.

Table 5.5: Average results from single shooting simulations estimating principal MOI.

1000 simulations with a convergence tolerance ε = 10−2 ≈ 0.6 deg/s, or approximately

0.02 deg/s per time step. Maximum number of iterations is 1000. Averages are taken

from converged values. Initial guess randomly distributed around true value with

σ = 5 kg-m2.

Scenario Convergence Estimate Iterations Error (kg-m2)

1 100 Ĩ1 = 50.07, Ĩ2 = 49.97, Ĩ3 = 26.07 7.70 5.17

2 99.7 Ĩ1 = 49.97, Ĩ2 = 39.94, Ĩ3 = 24.86 7.82 5.14

3 100 Ĩ1 = 50.31, Ĩ2 = 50.14, Ĩ3 = 26.23 7.57 5.10

4 100 Ĩ1 = 50.36, Ĩ2 = 40.35, Ĩ3 = 24.95 8.02 5.21

5 100 Ĩ1 = 50.12, Ĩ2 = 50.04, Ĩ3 = 26.07 7.43 5.31

6 99.6 Ĩ1 = 50.10, Ĩ2 = 40.09, Ĩ3 = 24.82 8.07 5.21

7 100 Ĩ1 = 50.06, Ĩ2 = 49.95, Ĩ3 = 25.86 7.55 5.22

8 99.7 Ĩ1 = 50.17, Ĩ2 = 40.07, Ĩ3 = 25.05 8.01 5.17

The axisymmetric configuration converges 100% of the time in each of the four

moment profiles, averaging seven and eight iterations with an average error around

5.2 kg-m2. The asymmetric configuration converges 100% of the time only in Case 6,

where the applied moment is constant about the body 2- and 3-axes. In each of the

10 cases, the single-shooting method is able to converge on values near the principal

MOI when accounting for applied, constant external moments.

The overall accurate performance of this method can be attributed to the initial

guess used to initiate the iterative process. Under the same simulation conditions, the
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experiment is repeated but the initial guess is generated from a random guess centered

around the true value, but with a σ value of 15 kg-m 2. The rates of convergence are

gathered in Table 5.6.

Table 5.6: Convergence rates from single shooting simulations estimating principal

MOI. 1000 simulations with a convergence tolerance ε = 10−2 ≈ 0.6 deg/s, or

approximately 0.02 deg/s per time step. Maximum number of iterations is 1000.

Averages are taken from converged values. Initial guess randomly distributed around

true value with σ = 15 kg-m2.

Scenario Convergence Rate

1 21%

2 11%

3 20%

4 12%

5 22%

6 10%

7 21%

8 12%

The axisymmetric configuration has a convergence rate of approximately 20%,

while the asymmetric spacecraft converges nearly 11% of the time. This poor

performance is a direct consequence of the initial guess supplied to the LM iteration

scheme. This result leads to the classical fact that a ‘good’ initial guess is required

for nearly any numerical algorithm, whether a single-shooting iteration problem or an

optimization problem. When the initial guess is close enough, the iterative process

converges based on the given tolerance level. However, when the initial guess is not
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within a basin of attraction for the solver, one can expect diverging results and poor

estimates.

The benefit to estimating relative MOI ratios in Section 5.4.1 is the search space

is limited to [−1, 1] for all three parameters. Another benefit is only two of the

parameters actually need to be iterated on, and the third will come from the Smelt

parameter petal relation. This research presented here allows for the estimation of

the actual principal MOI via a single-shooting method by exploiting the coupling

between moments and MOI in Euler’s equations, and the sensitivity introduced to

the Jacobian. Constant external moments were assumed for this research, whereas

the next step is to introduce time-varying moments, or moments that are functions

of the MOI. This single-shooting method relies on an initial guess that is near the

true value. For large, non-cooperative tumbling spacecraft, a close initial guess may

not always be available and this creates a vast search space. Section 5.4.3 presents

a method to estimate the actual principal MOI of a rigid body assuming torque-free

motion by using constants of the motion and heuristic optimization techniques.

5.4.3 Numerical Results and Discussion for Relative MOI Ratio

Estimation Using Heuristic Optimization and Polhode Ex-

ploitation.

This section will describe the results of implementing a two-step optimization

process on simulated angular velocity data to estimate actual values of principal

MOI by exploiting the polhodes of analytical rigid body mechanics and the Smelt

parameters. Table 5.7 details the four different MOI configurations and the initial

conditions for each scenario. Following the methodology proposed in Section 5.3.2,

100 simulations are carried out on the four different structural and angular velocity

configurations, simulated at four different noise levels for a total of 1,600 numerical
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simulations. Each simulation assumes 60 seconds of measurements available at a

constant time step of one second unless otherwise specified.

Table 5.7: Principal MOI configurations used for the two-step optimization of

polhodes using measured angular velocity.

MOI Configuration Principal MOI (kg-m2) Initial Angular Velocity (deg/s)

1 I1 = [50, 45, 30] ω0 = [4, 3, 1]T

2 I2 = [500, 450, 300] ω0 = [4, 3, 1]T

3 I3 = [100, 100, 50] ω0 = [2, 1, 1]T

4 I5 = [200, 180, 120] ω0 = [5, 3, 2]T

Examining a simulation of Case 1 where an asymmetric spacecraft is tumbling

with an initial angular velocity of ω0 = [4, 3, 1]T deg/s, the first PSO run yields a

final J1 cost function evaluation of 5.743 × 10−6 but takes nearly 600 iterations and

has parameter estimate errors around 5%. Using the output u1,PSO to prime the first

SQP to minimize J1, the final cost for J1 is 4.998e× 10−7 in 19 iterations, an order of

magnitude less than the PSO, and parameter estimate errors are less than 1%. The

process is repeated using the optimal u∗1 values, and after the second PSO to SQP

run, the final cost of J2 is approximately 3.915 × 10−5 with estimate errors on the

order of 0.3%.

The results from 100 simulations of Case 1 are presented in Table 5.8. The

optimization scheme estimates the angular momentum and kinetic energy with the

same relative accuracy for each noise value. For the two noise levels where H and

T are off by approximately 1.5%, the intermediate MOI is off by nearly 4.5%, the

minor MOI by 3.5%, and the major by 1.5%. From Figure 5.8, the optimal polhode

underestimates the trace of the angular velocity trajectory along the ω2 direction.
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The accuracy of this estimate could likely be improved by increasing the sampling

time to capture more of the curvature of the ω data to fit the polhode. A similar

trend occurs in Case 2, shown in Table 5.9 and Figure 5.9; however, the magnitude

of the actual MOI values has been increased tenfold, amplifying the effcect of not

capturing the curvature of the ω path.

Case 3 presents the case of an axisymmetric body at a slow angular velocity.

Theoretically, the angular velocity about the minor axis should remain constant for all

time, and the polhode should only vary in the (ω1, ω2) plane. The optimized polhode

created by the intersection of the two ellipsoids has a time variant ω3 history. This,

in effect, introduces a significant error to the minor MOI approximation, reaching up

to 15%. The observed data does not produce enough variability for the algorithm

to recognize the constant ω3 history. When the time-history is increased from 60

seconds to 15 minutes, the average MOI estimate error after 100 simulations is found

to be between 1% and 3% for the four noise levels. An example of the extended time

history is found in Figure 5.11.

Table 5.8: Results from 100 simulations of Case 1 at four different noise levels.

Variables with a tilde are final estimates. Numbers in parentheses indicate percent

errors. Noise values are given in deg/s. Initial angular velocity is ω0 = [4, 3, 1]T deg/s.

Case 1 H̃ (N·m·s) T̃ (N·m·) Ĩ1( kg-m2) Ĩ2( kg-m2) Ĩ3( kg-m2)

True 4.24 0.18 50 45 30

σ = 10−4 4.17 (-1.7%) 0.18 (1.8%) 49.2 (-1.6%) 42.9 (-4.5%) 28.9 (-3.7%)

σ = 10−3 4.21 (-0.6%) 0.19 (0.7%) 49.8 (-0.5%) 43.4 (-3.6%) 29.2 (-2.8%)

σ = 10−2 4.22 (-0.6%) 0.19 (0.7%) 49.8 (-0.5%) 43.4 (-3.6%) 29.2 (-2.5%)

σ = 10−1 4.18 (-1.5%) 0.19 (1.6%) 49.3 (-1.4%) 43 (-4.4%) 29.0 (-3.3%)
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Figure 5.8: Example of an optimal polhode fit for Case 1 with σ = 10−4 deg/s.

Fitting resulted in a 0.5% estimate error in I1, a 3.6% estimate error in I2, and a

1.2% estimate error in I3.

Table 5.9: Results from 100 simulations of Case 2 at four different noise levels.

Variables with a tilde are final estimates. Numbers in parentheses indicate percent

errors. Noise values are given in deg/s. Initial angular velocity is ω0 = [4, 3, 1]T

Case 2 H̃ (N·m·s) T̃ (N·m·) Ĩ1( kg-m2) Ĩ2( kg-m2) Ĩ3( kg-m2)

True 42.4 1.9 500 450 300

σ = 10−4 40.8 (-3.8%) 1.8 (-3.8%) 481.8 (-3.6%) 420.9 (-6.5%) 283.5 (-5.5%)

σ = 10−3 42.1 (-0.8%) 1.9 (-0.8%) 497.0 (-0.6%) 434.4 (-3.5%) 292.0 (-2.7%)

σ = 10−2 42.6 (-0.3%) 1.9 (-0.2%) 502.0 (0.4%) 438.9 (-2.5%) 294.8 (1-.8%)

σ = 10−1 40.2 (-5.3%) 1.8 (-5.3%) 473.8 (-5.3%) 414.8 (-7.8%) 277.8 (-7.4%)
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Figure 5.9: Example of an optimal polhode fit for Case 2 with σ = 10−4 deg/s.

Fitting resulted in a 0.3% estimate error in I1, a 3.9% estimate error in I2, and a

1.7% estimate error in I3.

Table 5.10: Results from 100 simulations of Case 3 at four different noise levels.

Variables with a tilde are final estimates. Numbers in parentheses indicate percent

errors. Noise values are given in deg/s. Initial angular velocity is ω0 = [2, 1, 1]T

Case 3 H̃ (N·m·s) T̃ (N·m·) Ĩ1( kg-m2) Ĩ2( kg-m2) Ĩ3( kg-m2)

True 3.99 0.084 100 100 50

σ = 10−4 4.03 (0.7%) 0.085 (0.8%) 100.53 (0.5%) 98.09 (-1.91%) 52.13 (4.2%)

σ = 10−3 4.41 (10.3%) 0.093 (10.5%) 110.14 (10.1%) 107.08 (7.08%) 57.66 (15.3%)

σ = 10−2 4.15 (3.8%) 0.087 (3.9%) 103.62 (3.6%) 100.94 (0.94%) 54.02 (8.1%)

σ = 10−1 4.16 (4.1%) 0.087 (4.3%) 103.99 (3.9%) 101.10 (1.10%) 54.16 (8.3%)
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Figure 5.10: Example of an optimal polhode fit for Case 3 with σ = 10−4 deg/s.

Fitting resulted in a 1.4% estimate error in I1, a 3.5% estimate error in I2, and a

2.1% estimate error in I3.

Figure 5.11: Example of an optimal polhode fit for Case 3 with σ = 10−4 deg/s with

an increased observation time of 15 minutes.
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Case 4 represents an asymmetric body tumbling that is being observed for 60

seconds with a greater spin about the primary axis. The results for Case 4 are

shown in Table 5.11 and Figure 5.12. The shape of the polhode is captured by

the optimization process by fitting the two ellipsoids such that the error in both

the rotational kinetic energy and angular momentum is approximately 1% for each

noise level. Error estimates for the MOI is between 1% and 3% for all axes, with the

exception of the 4% errors for the intermediate MOI for two noise levels. This is likely

due to underestimating both H and T in these scenarios, shrinking the ellipsoids and

altering the polhode path based on lack of observability. Increasing the measurement

time to 15 minutes, Figure 5.13 displays an optimized polhode fit that matches the ω

data where MOI errors are between 0.2% and 1.1%. Extending the observation time

allows the two-step optimization process to better form the intersection between the

ellipsoids and determine the optimal MOI estimate.
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Table 5.11: Results from 100 simulations of Case 4 at four different noise levels.

Variables with a tilde are final estimates. Numbers in parentheses indicate percent

errors. Noise values are given in deg/s. Initial angular velocity is ω0 = [5, 3, 2]T .

Case 4 H̃ (N·m·s) T̃ (N·m·) Ĩ1( kg-m2) Ĩ2( kg-m2) Ĩ3( kg-m2)

True 20.3 1.1 200 180 120

σ = 10−4 20.5 (1.30%) 1.09 (-1.14%) 202.7 (1.33%) 176.7 (-1.79%) 117.9 (-1.71%)

σ = 10−3 20.0 (1.25%) 1.07 (-1.36%) 197.9 (-1.04%) 176.4 (-4.09%) 114.9 (-3.74%)

σ = 10−2 19.9 (-1.43%) 1.06 (-1.56%) 197.6 (-1.20%) 176.8 (-4.07%) 115.5 (-4.25%)

σ = 10−1 20.5 (0.95%) 1.09 (-0.83%) 202.4 (1.18%) 179.9 (-1.67%) 117.9 (-1.72%)

Figure 5.12: Example of an optimal polhode fit for Case 4 with σ = 10−4 deg/s.

Fitting resulted in a 0.9% estimate error in I1, a 0.6% estimate error in I2, and a

1.3% estimate error in I3.
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Figure 5.13: Example of an optimal polhode fit for Case 4 with σ = 10−4 deg/s with

an increased observation time of 15 minutes.

As a means to validate the two-step optimization in terms of cost values, and to

justify the use of a warm start to the SQP algorithm, Figure 5.14 displays the average

final cost function using the results of 100 simulations of each of the four test cases

and the four noise levels. In each of the four noise cases, all of the test cases are able

to locally minimize either J1 or J2 via the heuristic PSO. By inspection, the SQP is

then able to use the local minima from the PSO as a primer to further minimize the

cost function, in most cases by at least an order of magnitude.

5.5 Conclusions and Future Work

This research examined the inverse problem of the classic Euler’s equations.

That is, given measurements of the rotational trajectory and initial conditions, can

one determine the moment of inertia? The proposed problem is now posed as one of

parameter estimation in a nonlinear ordinary differential equation under the presence

of stochastic measurement noise. Single-shooting methods employing Gauss-Newton
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Figure 5.14: Average final cost values for 100 runs of the four test cases at four noise

levels.
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and Levenberg-Marquardt iteration schemes were employed. When using measured

angular velocity data, relative MOI ratios were found by a single shooting numerical

scheme. However, estimation of the principal MOI was found to be unsuccessful,

unless coupling with known external moments is utilized. Internal moments and

momentum exchange principles could also likely be applied as a solution to this

problem.

In order to estimate the principal MOI, a heuristic optimization algorithm is used

in conjunction with a SQP optimizer to minimize two novel cost functions constraining

the rotational trajectory along the intersection of angular momentum and kinetic

energy ellipsoids in a two-step optimization process. This in effect shapes two different

ellipsoids representing constants of the motion such that their intersection is, within

some tolerance, the three-dimensional path traced by the angular velocity. This shape

is the well known polhode. The search space is bound by employing intermediate

conversions of the Smelt parameters, and by normalized angular momentum and

rotational kinetic energy in the first step of the minimization. The second step

then searches for the actual values of H, T , and the MOI. Various structural

configurations and rotational trajectories are investigated to assess the performance of

the established estimation algorithms. Estimates are found, on average, to be within

1 to 5% of the true MOI values with some exceptions, with variations attributed to

observation time and angular accelerations about particular axes. Referencing the

research in Chapter 3, the MOI estimation routine developed in this chapter could be

used to develop hypotheses for filter banks in the MMAE construct. Specific future

work pertaining to this research will be detailed in Chapter 6.
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VI. Conclusions

The initial goal of this research was strictly focused on the new application of

adaptive estimation to spacecraft attitude with time varying MOI. During the course

of the literature review and project development, a number of side research projects

were discovered. The first problem was assessing whether new computational methods

are beneficial to single-frame attitude determination. Further research then evolved to

focus on techniques to estimate principal MOI and relative MOI ratios by numerical

shooting and optimization techniques. The specific contributions of the research will

first be discussed, followed by the conclusions of the three research projects and areas

for future work.

6.1 Contributions

The main contributions of this dissertation are now detailed. A concise statement

of the contribution will be given, and then a brief paragraph is provided for discussion.

New application of adaptive estimation to spacecraft with time-

varying MOI: Motivated and discussed in Chapter 3, streaming attitude data

was used to probabilistically classify and estimate the structural configuration of

a spacecraft when the MOI is time-varying. This research was initially described in

Hess [19] as a means to estimate sensor noise and sensor boom extension parameters,

and was expanded in this research to a more complex spacecraft MOI model, provided

by Leve [100], with deployable and separable payloads.

Modification and development of hybrid adaptive estimation schemes

for sudden dynamics changes: Discussed in Chapter 3, Soken’s [60] algorithm for

sudden change detection via adaptive estimation was modified from assessing the state

vector to assessing the parameter estimate using the parallel bank of filters. Soken’s

method was also modified in order to transition from an EKF to a UKF formulation.
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A hybrid algorithm was developed that combined Soken’s sudden change detection

with the ALM method. The hybrid adaptive estimation scheme developed found

that, for this scenario, the algorithm correctly identifies separating payloads between

90% and 99% of the time.

Rapid quartic eigendecomposition as applied to QUEST for single-

frame attitude determination: A key contribution from the work in Chapter 4

resulted in the application of a rapid quartic root solver applied to the characteristic

equation from Wahba’s problem for a savings in computational cost. This method

produces an average of 67% improvement to the QUEST computation time, using the

same convergence tolerance for comparison. The decrease in computation time has the

potential to reduce the time lag between attitude estimate and control calculation,

facilitating near real-time optimal control. By solving simultaneously for all four

eigenvalues, the method also avoids the possibility of converging on the non maximum

eigenvalue to produce an incorrect attitude estimate.

Investigation of heuristic optimization techniques for attitude deter-

mination via Wahba’s problem: The work in Chapter 4 examined the application

of heuristic based techniques, to include particle swarm optimization (PSO) and ge-

netic algorithms (GA), to solve Wahba’s minimization problem to estimate spacecraft

attitude. Both heuristic methods are capable of minimizing Wahba’s cost function di-

rectly, but come with a significant increase in computation time compared to QUEST,

q-method, and FQS. Although these methods are not well posed for on-board pro-

cessing, the heuristic algorithms are applicable to off-line post-processing of vector

observation time history. Direct minimization of the cost function by searching the

(q1, q2, q3) maintains the unit norm constraint and avoids Gibbs vector singularities.

Development of single-shooting parameter estimation technique as

applied to Euler’s rotational EOMs: The research in Chapter 5 developed an
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algorithm that, given a series of simulated noisy angular velocity measurements, can

converge on the relative MOI ratios using single-shooting and Levenberg-Marquardt

iteration. An assumed external moment profile was analyzed and it was shown

principal MOI can be estimated in this manner, but requires a close initial guess

for convergence.

Exploitation of polhodes for estimation of principal MOI via a two-

step optimization process: The work in Chapter 5 developed a method that

combines a heuristic optimization in conjunction with an SQP optimizer to minimize

two novel cost functions constraining the rotational trajectory along the intersection

of angular momentum and kinetic energy ellipsoids in a two-step optimization process.

This in effect shapes two different ellipsoids representing constants of the motion such

that their intersection is, within some tolerance, the three-dimensional path traced

by the angular velocity. Estimates are found, on average, to be within 1 to 5% of the

true MOI values with some exceptions. These exceptions are attributed to observed

measurements that do not fully capture the shape of the polhode intersection.

Demonstration of alternate method of ballistic coefficient estimation

for a reentering spacecraft using MMAE: This brief work in Appendix C

presents a method to estimate the ballistic coefficient of a reentering satellite using

noisy radar data. A reentry is simulated to generate truth data and measurements

of range, range rate, azimuth, and elevation. These measurements were corrupted

and implemented in a MMAE bank of filters, each hypothesizing a different ballistic

coefficient. Convergence on the correct model was shown as an example of MMAE as

applied to a nonlinear system, but upon a further literature review, has not, to the

knowledge of this author, been documented.
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6.2 Research Conclusions and Future Work

6.2.1 Adaptive Estimation.

The purpose of the numerical experiment presented in Chapter 3 is to analyze

the new application of adaptive estimation techniques to the time-varying spacecraft

MOI problem. Three different scenarios were analyzed. The first scenario sought the

identification of a spacecraft’s relative MOI ratios, the driving parameter in torque-

free rigid body motion. The second scenario sought the identification of a continuous

command input for a gimbaled payload. The third scenario examined a series of

separating payloads, each producing a discontinuity in the spacecraft MOI. A hybrid

adaptive estimation scheme was developed that, for this scenario, performs on the

same order of accuracy magnitude as the state-of-the-art.

Some key findings from this work exposed the need for rotational information

about the three axes and the difficulty in estimating MOI ratios when unavailable,

and also the need for variability and diversity in model hypotheses in an adaptive

estimation filter bank construction. Another key finding was that the observable

change in dynamics due to the MOI varying must be greater than the noise floor,

otherwise it is likely the estimator will account for the dynamical changes by

compensating in noise rejection calculations. This research allowed for the use of

streaming attitude data to estimate structural changes and has served as an initial

proof of concept, ultimately laying the foundation for future experimental work

examining spacecraft MOI change detection via adaptive attitude estimation.

There are multiple paths and directions for future work regarding adaptive

estimation. One of the first recommendations is a reformulation of the problem such

that updated multiple model techniques may be applied. Reformulating the problem

in the form of a Markov process will lend well to the use of an Interacting Multiple

Model (IMM) that allows more mixing between models.
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Following the translational maneuver detection proposed by Goff in [13], a

rotational analog can be developed to detect changes in MOI. Rather than allowing

the MOI to be a parameter or model in the filter bank, the problem could be reposed

using an EKF and allow for a variable state dimension filter that adapts in size to

include the MOI in the state vector. A metric such as the Mahalanobis distance

would then be monitored, and above reaching a certain threshold, modifying the

size of the state vector and inflating the covariance would allow convergence on a

new MOI estimate, reducing the size again once the Mahalanobis distance reaches

the threshold. The use of the Mahalanobis distance would allow for a decrease in

models in the filter bank and for more variability in possible MOI modes, rather than

assuming only M models in the bank are possibilities. The use of an IMM or other

multiple model method using Markov chains also allows for more recent and advanced

techniques such as pruning and mixing among models in the bank.

Chee and Forbes recently constructed the norm-constrained UKF and applied

the filter to tracking high area-to-mass ratio (HAMR) space debris [117]. This norm-

constrained UKF circumvents the intermediate attitude parameterization conversions

used in the USQUE, which was the filter applied in this research. Chee follows a

classical derivation of a norm-constrained EKF, but adapts the process for the UKF

directly for the purpose of maintaining a unit quaternion norm. The use of this norm-

constrained UKF would likely reduce the computational loading within the filter

bank, and also allow for a smoothly propagated covariance, rather than matching

covariances between parameterizations. Moreover, the use of this filter would also

lend well to a full 6-DOF simulation rather than the complications faced with the

USQUE method.

The use of different sensor sources is also of value to the academic and defense

communities. This research examined the use of on-board gyros and magnetometers
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to recursively estimate the attitude; however, this is easily adaptable by a simple

change in the measurement-state relation ỹ = h(x). Other sensor sources include

photometric light curve data, optical sensors, on-board star sensors, and so forth.

Simulating the adaptive estimation problem with a variety of sensors is a key step in

transitioning this research to technology.

Another area of future work is developing and modeling combined rotational

and translational dynamics in the coupled attitude and orbit determination problem.

Adaptive estimation of the two problems has been examined individually in the

literature, but, other than the work by Linares [9; 62], the two sets of dynamics have

not been combined. Examining combinations of time varying MOI and spacecraft

translational maneuvers would be of great benefit to the community. Creating

the combined translational/rotational problem could also lend well to incorporating

thruster firings and higher-order perturbations to estimate non-conservative forces.

In order to generalize results, a means to non-dimensionalize the time scale of

the adaptive estimation problem should be examined. Possible modes for research

include normalizing by an orbit specific metric such as orbital period, or by a value

associated with the rotational motion (such as a rotational period).

A final recommendation for future work in validating adaptive estimation

research is the implementation of this numerical experiment in hardware. A simple

experiment would involve suddenly adding mass to a ground-based satellite simulator

with a known MOI configuration before a mass addition, and a known MOI

configuration after an addition. Having certainty in the MOI of the spacecraft prior

to a change event, along with certainty in the MOI after, these models would be

included in a filter bank and, following the methodology in Chapter 3, perform an

adaptive estimation with the streaming attitude data to demonstrate the capability
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of this method. A hardware demonstration would give significant confidence in the

efficacy shown by this method in the numerous simulations in this research.

6.2.2 Single-Frame Attitude Estimation.

This research proposed the application of Strobach’s Fast Quartic Solver [18]

to quickly solve the quartic eigenvalue problem required for the quaternion attitude

estimate. The FQS algorithm decomposes the quartic characteristic equation of the

K matrix into the product of two quadratics, and takes advantage of a well-defined

Jacobian to equate polynomial coefficients via LU decomposition. This method

produces an average of 67% improvement to the QUEST computation time, while

using the same convergence criteria produces similar estimation error values. The

decrease in computation time has the potential to reduce the time lag between

attitude estimate and control calculation. By solving simultaneously for all four

eigenvalues, the method also avoids the possibility of converging on the non maximum

eigenvalue. The FQS application is prone to the same singularities as QUEST and

the q-method, but these can be handled similarly by sequential rotations or other

singularity avoidance or removal methods.

Additionally, this work examined the application of heuristic based techniques,

to include particle swarm optimization (PSO) and genetic algorithms (GA), to

solve Wahba’s minimization problem to estimate spacecraft attitude. Both heuristic

methods are capable of minimizing Wahba’s cost (loss) function directly, but come

with a significant increase in computation time compared to QUEST, q-method, and

FQS. The algorithms also come with a computation complexity that may not be

suitable for on board implementation. One of the main benefits to estimating the

quaternion via a heuristic method is a ‘close enough’ initial guess is not required, as

heuristic techniques implement randomly chosen initial candidate solutions. Although

these methods are not well posed for on-board processing, the heuristic algorithms
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are applicable to off-line post-processing of vector observation time history. Direct

minimization of the cost function by searching the (q1, q2, q3) consequently maintains

the unit norm constraint and avoids Gibbs vector singularities.

Suggested future work involves the development of an analytical solution to the

characteristic equation of the K matrix. Yang [44] met some success in developing an

analytical solution, but some limitations were encountered. Future work could also

re-parameterize the problem in terms of the Rodriguez parameters or some other form

of attitude parameter of a dimension less than 4, and develop a closed-form solution

to the minimization of Wahba’s cost function. Moreover, re-parameterizing Wahba’s

cost function with an attitude parameter of dimension less than 4 would also decrease

the computation time required in the heuristic optimization techniques.

6.2.3 Moment of Inertia Estimation.

Chapter 5 examined the inverse problem of the classic Euler’s equations. That

is, given measurements of the rotational trajectory and initial conditions, can one

determine the moment of inertia? The current problem is now posed as one of

parameter estimation in a nonlinear ordinary differential equation under the presence

of stochastic measurement noise. Single-shooting methods employing Levenberg-

Marquardt iteration schemes were employed. When using simulated measured

angular velocity data, relative MOI ratios were found by a single shooting numerical

scheme. However, estimation of the principal MOI was found to be less than

successful, unless coupling with external moments is utilized.

In order to estimate the principal MOI, a heuristic optimization algorithm is

used in conjunction with an SQP optimizer to minimize two novel cost functions

constraining the rotational trajectory along the intersection of angular momentum

and kinetic energy ellipsoids in a two-step optimization process. This in effect

shapes two different ellipsoids representing constants of the motion such that their
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intersection is, within some error tolerance, the three-dimensional path traced by

the angular velocity. This shape is well known in analytical rigid body motion as

a polhode. The search space is bound by employing intermediate conversions of

the Smelt parameters, and by normalized angular momentum and rotational kinetic

energy in the first step of the minimization. The second step then searches for

the actual values of H, T , and parameter σ. Various structural configurations and

rotational trajectories are investigated to assess the performance of the established

estimation algorithms. Estimates are found, on average, to be within < 1% to 5%

of the true MOI values with some exceptions. These exceptions are attributed

to observed measurements that do not fully capture the shape of the polhode

intersection.

The suggested future work in this research could involve estimation of the full

MOI matrix and determining the products of inertia (the off-diagonal components).

This would involve a reformulation of the kinetic energy and angular momentum

constraints, and would also limit the use of Smelt parameters as an intermediate

step. An additional step is then to take streaming quaternion data, and using the

coupled relation between q̇ and ω̇, determine if the MOI, in theory, can be estimated

from streaming quaternions.

6.3 Summary

This research began focusing on applying adaptive estimation techniques to

spacecraft attitude dynamics with time varying MOI. A number of research projects

were also discovered that were distinct, but related, to the attitude estimation

problem. Adaptive estimation techniques were applied and shown to be capable of

detecting MOI variations, whether continuous or discontinuous. New techniques were

either modified or developed that can detect discontinuities in MOI up to 98% of the

time. A classical problem of attitude estimation was tackled with new computation
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methods, decreasing the computation time by an average of nearly 67%. Numerical

methods were also used to estimate the relative MOI ratios given noisy measured

angular velocity, which are the key driving system parameters for rotational motion.

Finally, the classical polhodes of analytical mechanics were exploited in a two-step

optimization process to estimate the principal MOI of a rigid body, with results, on

average, to be within < 1% to 5% of the true MOI values with some minor exceptions.

Overall, this research has contributed to the field by providing new techniques to solve

attitude determination problems accurately, quickly, and using techniques that are

adaptable. The results in this research positively demonstrate with attitude dynamics

the NRC’s recommendation of the efficacy of multiple models when sudden changes

in dynamics are expected, laying a foundation for future experimental hardware work

validating these positive results, while simultaneously strengthening and bolstering

the community’s SSA techniques and capabilities.
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Appendix A: Spacecraft Parameters used in Chapter 3, Scenario 2

This appendix will detail the assumed mass characteristics of the spacecraft

investigated in Section 3.4.2. Section 3.3.4 details the development of the full

spacecraft MOI model. All values are assumed to be nominal and for simulation

purposes only and are not intended for use as design guidance or operational inputs,

although care is taken to ensure the MOI values are mathematically valid. The static

main bus MOI is assumed as

IB = diag ([240, 160, 100]) kg-m2. (A.1)

Table A.1 details the mass of and position vectors to the separable masses. Table A.2

details the parameters used for the solar panel and the other deployable payload.

Table A.1: Separable payload parameters used in Scenario 2 of Chapter 3

Payload Mass (kg) Position Vector r̂S,i (m) Separable MOI IS,i kg-m2

1 50 [1, 0, 0]T diag ([12, 12, 4])

2 25 [0, 1, 0]T diag ([4.8, 4.8, 2.4])

3 20 [0, 0, 1]T diag ([20, 20, 12])

Table A.2: Solar panel and payload parameters used in Scenario 2 of Chapter 3

Payload Mass (kg) MOI ( kg-m2) Bus Arm r̄ (m) Payload Arm r̃ (m)

Solar Panel 35 diag ([40, 40, 16]) [0, 1.5, 0]T [0, 1, 0]T

Deployable 80 diag ([50, 30, 30]) [2, 0, 0]T [0, 2, 0.5]T
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Appendix B: Spacecraft Parameters used in Chapter 3, Scenario 3

This appendix will detail the assumed mass characteristics of the spacecraft

investigated in Section 3.4.3. Section 3.3.4 details the development of the full

spacecraft MOI model. All values are assumed to be nominal and for simulation

purposes only and are not intended for use as design guidance or operational inputs,

although care is taken to ensure the MOI values are mathematically valid. The static

main bus MOI is assumed as

IB = diag ([330, 240, 120]) kg-m2. (B.1)

The static main bus MOI is assumed to account for the solar panels as well as the

deployable payloads, which are non-rotating in this scenario. Table B.1 details the

mass of and position vectors to the separable masses.

Table B.1: Separable payload parameters used in Scenario 3 of Chapter 3

Payload Mass (kg) Position Vector r̂S,i (m) Separable MOI IS,i kg-m2

1 200 [1, 0, 1]T diag ([40, 40, 20])

2 100 [1, 1, 0]T diag ([10.5, 7.5, 4.5])

3 40 [0, 1, 1]T diag ([10, 7, 5])
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Appendix C: Ballistic Coefficient Estimation for a Re-entering Satellite

using Ground Based Radar via Adaptive Estimation

This section presents a nominal example of parameter estimation via MMAE

in a nonlinear system. The scenario is a satellite on a re-entry trajectory being

tracked by a ground radar. The objective is to use MMAE to estimate the ballistic

coefficient of the particular satellite. A UKF is implemented for the reentry estimation

problem in order to demonstrate the efficacy of a parallel bank of UKFs in the MMAE

architecture.

C.1 System Model

An uncontrolled satellite reentering the atmosphere can be modeled with a flat,

non-rotating earth assumption, along with the assumption of constant gravity. The

EOMs used in this example of parameter estimation in a coupled, nonlinear system

are taken from [118], which differ slightly from Hicks [119], but will effectively serve

for the current example. The system has six states, three position and three velocity.

The system state vector x is defined as

x =

[
x y z ẋ ẏ ż

]T
, (C.1)

where (x, y, z) is the three-dimensional location of the satellite with respect to a given

ground radar, and the dotted variables indicate velocities. The system model ẋ is

given as

ẋ =

[
ẋ ẏ ż ẍ ÿ z̈

]T
. (C.2)
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where double-dots indicate accelerations. The acceleration models are modified from

[118] and given as

ẍ = −ρv
2B∗

2
g cos γ1 cos γ2

ÿ =
ρv2B∗

2
g sin γ1 − g

z̈ = −ρv
2B∗

2
g cos γ1 sin γ2

, (C.3)

where v is the 2-norm of the three velocity components at a given time, g is the

gravitational acceleration, ρ is the density which will follow a simple exponential

model given in [118], the flight path angles γ1 and γ2 are defined as

γ1 = tan−1

(
− ẏ√

ẋ2 + ż2

)
γ2 = tan−1

(
− ż
ẋ

) , (C.4)

and the ballistic coefficient B∗ is the ratio of the product of the satellite’s drag

coefficient CD and area A to the satellite’s mass m, given as

B∗ =
CDA

m
. (C.5)

The accelerations are direct functions of ballistic coefficient, and are coupled by both

the velocity term and the flight path angles, which are functions of velocity. Figure

C.1 depicts the geometry of the current system.

C.2 Measurement Model

The work presented in [118] assumes all six states are available for measurements.

This research introduces additional complexity to [118] by removing 33% of the

available measurements. The measurement model used in this experiment will assume

a ground radar is available that provides range ρr, range rate ρ̇r, azimuth α, and

elevation ε. For compactness, let the vector ρ contain the position components

x, y, and z, and let the vector ρ̇ contain the position components ẋ, ẏ, and ż. The
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Figure C.1: Geometry for the ballistic reentry problem adapted from [118]

measurement model is then given as

ρr = ||ρ||

ρ̇r =
ρ · ρ̇
||ρ||

α = tan−1

(
x

y

)
ε = sin−1

(
y

ρr

)
. (C.6)

The measurement vector ỹ is then the collection of the four measurements, defined

as

ỹ = h (x) =

[
ρr ρ̇r α ε

]T
. (C.7)
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The nominal ground radar is assumed to be calibrated with constant known noise

levels that are Gaussian distributed given by the matrix R given as

R =



σ2
ρ 0 0 0

0 σ2
ρ̇ 0 0

0 0 σ2
α 0

0 0 0 σ2
ε


(C.8)

C.3 Methodology

Truth data will be generated from a set of initial conditions and true dynamics

model through numerical integration. Having simulated the true state and parameter

values, range, range rate, azimuth, and elevation measurements will be calculated

using the measurement relation h (x). The true measurements will then be corrupted

by the given amount of measurement noise Rk that is zero-mean Gaussian distributed.

The process noise Qk is assumed constant as the zero matrix 06×6. These

measurements now serve as input to a parallel bank of filters, each assuming a different

ballistic coefficient. The general form of each filter will follow the UKF described in

this research in 2.2. The sigma points in each UKF are numerically propagated

according to the specific filter’s assumed dynamics, and the filter parameters are set

such that κ = 0, α = 0.001, β = 2 as described in [118]. The residuals and innovation

covariance from each filter will then be input to the MMAE scheme, described in

Section 2.4.
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C.4 Results and Discussion

A ballistic reentry is modeled assuming the initial state used in [118]

x0 =



13.55 km

30.48 km

0.30 km

0.43 km/s

−0.08 km/s

0.10 km/s


. (C.9)

The initial covariance is assumed to be

P0 =

1.524 · 13×3 03×3

03×3 0.305 · 13×3

 . (C.10)

It is also assumed that target tracking has occurred prior to the beginning of the

adaptive estimation algorithm, allowing for confidence in initial state and covariance

estimates. A constant process noise Qk is taken as

Qk =

3.048 · 13×3 03×3

03×3 6.096 · 13×3

 . (C.11)

A gravity constant of 9.81m/s2 is assumed. The simulation time uses an initial

time of t0 = 0 and final time of tf = 3 min with a constant time step of ∆t = 1 sec.

The true value for the ballistic coefficient is B∗ = 0.002 m2/kg. A bank of 10 filters

is constructed of potential ballistic coefficient values that are detailed in Table C.1.

Figure C.2 shows the model likelihood time series along with the probabilistically

weighted parameter estimate. Within eight seconds, the true model has already

achieved the maximum likelihood among the models in the bank. Beginning around

25 seconds, Model 4 (whose B∗) is 0.04, compared to Model 5’s true value of 0.05)

begins to increase in likelihood and compete with Model 5, but the true value regains is
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maxima around 65 seconds. After two minutes of tracking the re-entering spacecraft,

the true model has a likelihood near unity and maintains that value for the remainder

of the simulation. After reaching a probability of near one, the parameter estimate

coincides with the true value. Figure C.3 displays the six estimated position and

velocity states compared with the adaptive estimate and their respective 1σ bounds.

A similar event occurs after approximately two minutes of processing, where the 1σ

covariance bounds on the position estimates tighten around the true values following

the likely identification of the true parameter.

Table C.1: Filter bank for the ballistic reentry ballistic coefficient estimation problem.

Model Number B∗ Value Model Number B∗ Value

1 0.01 6 0.06

2 0.02 7 0.07

3 0.03 8 0.08

4 0.04 9 0.09

5 (True) 0.05 0.10 0.01
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Figure C.2: Likelihood time series and weighted B∗ estimate for a realization of the

reentry scenario.
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0 20 40 60 80 100 120 140 160 180

t (s)

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

ż
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Figure C.3: Comparison of position and velocity state estimates using a UKF on

simulated radar data for the ballistic reentry problem.
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